nb / app.py
camparchimedes's picture
Update app.py
afe3d6c verified
raw
history blame
1.89 kB
import gradio as gr
import warnings
import torch
from transformers import WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor
import soundfile as sf
from huggingface_hub import spaces
warnings.filterwarnings("ignore")
# Load tokenizer + model
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained("NbAiLabBeta/nb-whisper-medium")
processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium")
# set up device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch_dtype = torch.float32
# move model to device
model.to(device)
@spaces.GPU
def transcribe_audio(audio_file):
audio_input, _ = sf.read(audio_file)
inputs = processor(audio_input, sampling_rate=16000, return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad():
output = model.generate(
inputs.input_features,
max_length=448,
num_beams=5,
task="transcribe",
language="no"
)
transcription = processor.batch_decode(output, skip_special_tokens=True)[0]
return transcription
# HTML for banner image
banner_html = """
<div style="text-align: center;">
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/Olas%20AudioSwitch%20Shop.png" alt="Banner" width="87%; height:auto;">
</div>
"""
# Gradio interface
iface = gr.Blocks()
with iface:
gr.HTML(banner_html)
gr.Markdown("# Audio Transcription App\nUpload an audio file to get the transcription")
audio_input = gr.Audio(type="filepath")
transcription_output = gr.Textbox()
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=transcription_output)
# Launch the interface
iface.launch(share=True, debug=True)