Spaces:
Runtime error
Runtime error
from functools import lru_cache | |
from typing import List, Tuple | |
import cv2 | |
import numpy | |
from cv2.typing import Size | |
import facefusion.choices | |
from facefusion import inference_manager, state_manager | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import conditional_thread_semaphore | |
from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
return\ | |
{ | |
'xseg_1': | |
{ | |
'hashes': | |
{ | |
'face_occluder': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'), | |
'path': resolve_relative_path('../.assets/models/xseg_1.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_occluder': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'), | |
'path': resolve_relative_path('../.assets/models/xseg_1.onnx') | |
} | |
}, | |
'size': (256, 256) | |
}, | |
'xseg_2': | |
{ | |
'hashes': | |
{ | |
'face_occluder': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'), | |
'path': resolve_relative_path('../.assets/models/xseg_2.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_occluder': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'), | |
'path': resolve_relative_path('../.assets/models/xseg_2.onnx') | |
} | |
}, | |
'size': (256, 256) | |
}, | |
'bisenet_resnet_18': | |
{ | |
'hashes': | |
{ | |
'face_parser': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'), | |
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_parser': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'), | |
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx') | |
} | |
}, | |
'size': (512, 512) | |
}, | |
'bisenet_resnet_34': | |
{ | |
'hashes': | |
{ | |
'face_parser': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'), | |
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_parser': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'), | |
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx') | |
} | |
}, | |
'size': (512, 512) | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
_, model_sources = collect_model_downloads() | |
return inference_manager.get_inference_pool(__name__, model_sources) | |
def clear_inference_pool() -> None: | |
inference_manager.clear_inference_pool(__name__) | |
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: | |
model_hashes = {} | |
model_sources = {} | |
model_set = create_static_model_set('full') | |
if state_manager.get_item('face_occluder_model') == 'xseg_1': | |
model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder') | |
model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder') | |
if state_manager.get_item('face_occluder_model') == 'xseg_2': | |
model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder') | |
model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder') | |
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18': | |
model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser') | |
model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser') | |
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34': | |
model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser') | |
model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser') | |
return model_hashes, model_sources | |
def pre_check() -> bool: | |
model_hashes, model_sources = collect_model_downloads() | |
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources) | |
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask: | |
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur) | |
blur_area = max(blur_amount // 2, 1) | |
box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32) | |
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0 | |
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0 | |
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0 | |
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0 | |
if blur_amount > 0: | |
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25) | |
return box_mask | |
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask: | |
face_occluder_model = state_manager.get_item('face_occluder_model') | |
model_size = create_static_model_set('full').get(face_occluder_model).get('size') | |
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) | |
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255 | |
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3) | |
occlusion_mask = forward_occlude_face(prepare_vision_frame) | |
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32) | |
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1]) | |
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 | |
return occlusion_mask | |
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask: | |
face_parser_model = state_manager.get_item('face_parser_model') | |
model_size = create_static_model_set('full').get(face_parser_model).get('size') | |
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) | |
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255 | |
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32)) | |
prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32)) | |
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0) | |
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2) | |
region_mask = forward_parse_face(prepare_vision_frame) | |
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ]) | |
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1]) | |
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 | |
return region_mask | |
def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask: | |
convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32)) | |
mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32) | |
mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) #type:ignore[call-overload] | |
mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3))) | |
mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15) | |
return mouth_mask | |
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask: | |
face_occluder_model = state_manager.get_item('face_occluder_model') | |
face_occluder = get_inference_pool().get(face_occluder_model) | |
with conditional_thread_semaphore(): | |
occlusion_mask : Mask = face_occluder.run(None, | |
{ | |
'input': prepare_vision_frame | |
})[0][0] | |
return occlusion_mask | |
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask: | |
face_parser_model = state_manager.get_item('face_parser_model') | |
face_parser = get_inference_pool().get(face_parser_model) | |
with conditional_thread_semaphore(): | |
region_mask : Mask = face_parser.run(None, | |
{ | |
'input': prepare_vision_frame | |
})[0][0] | |
return region_mask | |