SMPLer-X / main /transformer_utils /mmpose_README_CN.md
onescotch
add huggingface implementation
2de1f98
|
raw
history blame
21.6 kB
<div align="center">
<img src="resources/mmpose-logo.png" width="450"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/build/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[📘文档](https://mmpose.readthedocs.io/zh_CN/v0.28.0/) |
[🛠️安装](https://mmpose.readthedocs.io/zh_CN/v0.28.0/install.html) |
[👀模型库](https://mmpose.readthedocs.io/zh_CN/v0.28.0/modelzoo.html) |
[📜论文库](https://mmpose.readthedocs.io/zh_CN/v0.28.0/papers/algorithms.html) |
[🆕更新日志](https://mmpose.readthedocs.io/en/v0.28.0/changelog.html) |
[🤔报告问题](https://github.com/open-mmlab/mmpose/issues/new/choose)
</div>
<div align="center">
[English](README.md) | 简体中文
</div>
## 简介
MMPose 是一款基于 PyTorch 的姿态分析的开源工具箱,是 [OpenMMLab](http://openmmlab.org/) 项目的成员之一。
主分支代码目前支持 **PyTorch 1.5 以上**的版本。
https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4
<details open>
<summary><b>主要特性</b></summary>
- **支持多种人体姿态分析相关任务**
MMPose 支持当前学界广泛关注的主流姿态分析任务:主要包括 2D多人姿态估计、2D手部姿态估计、2D人脸关键点检测、133关键点的全身人体姿态估计、3D人体形状恢复、服饰关键点检测、动物关键点检测等。
具体请参考 [功能演示](demo/README.md)。
- **更高的精度和更快的速度**
MMPose 复现了多种学界最先进的人体姿态分析模型,包括“自顶向下”和“自底向上”两大类算法。MMPose 相比于其他主流的代码库,具有更高的模型精度和训练速度。
具体请参考 [基准测试](docs/en/benchmark.md)(英文)。
- **支持多样的数据集**
MMPose 支持了很多主流数据集的准备和构建,如 COCO、 MPII 等。 具体请参考 [数据集准备](docs/en/data_preparation.md)。
- **模块化设计**
MMPose 将统一的人体姿态分析框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的人体姿态分析模型。
- **详尽的单元测试和文档**
MMPose 提供了详尽的说明文档,API 接口说明,全面的单元测试,以供社区参考。
</details>
## 最新进展
- 2022-07-06: MMPose [v0.28.0](https://github.com/open-mmlab/mmpose/releases/tag/v0.28.0) 已经发布. 主要更新包括:
- 支持了新的主干网络 [TCFormer](https://openaccess.thecvf.com/content/CVPR2022/html/Zeng_Not_All_Tokens_Are_Equal_Human-Centric_Visual_Analysis_via_Token_CVPR_2022_paper.html) (CVPR'2022),详见 [模型信息](/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/tcformer_coco-wholebody.md)
- 增加了 [RLE](https://arxiv.org/abs/2107.11291) 在 COCO 数据集上的模型,详见 [模型信息](/configs/body/2d_kpt_sview_rgb_img/deeppose/coco/resnet_rle_coco.md)
- 优化了 [Swin](/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/swin_coco.md) 模型精度
- 2022-04: MMPose 代码可以通过 [Gitee](https://gitee.com/open-mmlab/mmpose) 访问
- 2022-02-28: [MMDeploy](https://github.com/open-mmlab/mmdeploy) v0.3.0 支持 MMPose 模型部署
- 2021-12-29: OpenMMLab 开放平台已经正式上线! 欢迎试用基于 MMPose 的[姿态估计 Demo](https://platform.openmmlab.com/web-demo/demo/poseestimation)
## 安装
MMPose 依赖 [PyTorch](https://pytorch.org/) 和 [MMCV](https://github.com/open-mmlab/mmcv),以下是安装的简要步骤。
更详细的安装指南请参考 [install.md](docs/zh_cn/install.md)。
```shell
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
git clone https://github.com/open-mmlab/mmpose.git
cd mmpose
pip3 install -e .
```
## 教程
请参考 [get_started.md](docs/zh_cn/get_started.md) 了解 MMPose 的基本使用。
MMPose 也提供了其他更详细的教程:
- [如何编写配置文件](docs/zh_cn/tutorials/0_config.md)
- [如何微调模型](docs/zh_cn/tutorials/1_finetune.md)
- [如何增加新数据集](docs/zh_cn/tutorials/2_new_dataset.md)
- [如何设计数据处理流程](docs/zh_cn/tutorials/3_data_pipeline.md)
- [如何增加新模块](docs/zh_cn/tutorials/4_new_modules.md)
- [如何导出模型为 onnx 格式](docs/zh_cn/tutorials/5_export_model.md)
- [如何自定义运行配置](docs/zh_cn/tutorials/6_customize_runtime.md)
- [如何使用摄像头应用接口(Webcam API)](docs/zh_cn/tutorials/7_webcam_api.md)
## 模型库
各个模型的结果和设置都可以在对应的 config(配置)目录下的 *README.md* 中查看。
整体的概况也可也在 [模型库](https://mmpose.readthedocs.io/zh_CN/latest/recognition_models.html) 页面中查看。
<details open>
<summary><b>支持的算法</b></summary>
- [x] [DeepPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014)
- [x] [CPM](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#cpm-cvpr-2016) (CVPR'2016)
- [x] [Hourglass](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hourglass-eccv-2016) (ECCV'2016)
- [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017)
- [x] [Associative Embedding](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017)
- [x] [HMR](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#hmr-cvpr-2018) (CVPR'2018)
- [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018)
- [x] [HRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019)
- [x] [VideoPose3D](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019)
- [x] [HRNetv2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019)
- [x] [MSPN](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019)
- [x] [SCNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#scnet-cvpr-2020) (CVPR'2020)
- [x] [HigherHRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020)
- [x] [RSN](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#rsn-eccv-2020) (ECCV'2020)
- [x] [InterNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#internet-eccv-2020) (ECCV'2020)
- [x] [VoxelPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020
- [x] [LiteHRNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021)
- [x] [ViPNAS](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021)
</details>
<details open>
<summary><b>支持的技术</b></summary>
- [x] [FPN](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#fpn-cvpr-2017) (CVPR'2017)
- [x] [FP16](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017)
- [x] [Wingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018)
- [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019)
- [x] [DarkPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020)
- [x] [UDP](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#udp-cvpr-2020) (CVPR'2020)
- [x] [Albumentations](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#albumentations-information-2020) (Information'2020)
- [x] [SoftWingloss](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#softwingloss-tip-2021) (TIP'2021)
- [x] [SmoothNet](/configs/_base_/filters/smoothnet_h36m.md) (arXiv'2021)
- [x] [RLE](https://mmpose.readthedocs.io/zh_CN/latest/papers/techniques.html#rle-iccv-2021) (ICCV'2021)
</details>
<details open>
<summary><b><a href="https://mmpose.readthedocs.io/zh_CN/latest/datasets.html">支持的数据集</a></b></summary>
- [x] [AFLW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011)
- [x] [sub-JHMDB](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013)
- [x] [COFW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013)
- [x] [MPII](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014)
- [x] [Human3.6M](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014)
- [x] [COCO](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cmu-panoptic-iccv-2015) (ICCV'2015)
- [x] [DeepFashion](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016)
- [x] [300W](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016)
- [x] [RHD](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015)
- [x] [AI Challenger](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017)
- [x] [MHP](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018)
- [x] [WFLW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018)
- [x] [PoseTrack18](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018)
- [x] [OCHuman](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019)
- [x] [CrowdPose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019)
- [x] [MPII-TRB](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019)
- [x] [FreiHand](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019)
- [x] [Animal-Pose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019)
- [x] [OneHand10K](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019)
- [x] [Vinegar Fly](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019)
- [x] [Desert Locust](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [ATRW](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020)
- [x] [Halpe](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020)
- [x] [COCO-WholeBody](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020)
- [x] [MacaquePose](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020)
- [x] [InterHand2.6M](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020)
- [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021)
- [x] [Horse-10](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021)
</details>
<details>
<summary><b>支持的骨干网络</b></summary>
- [x] [AlexNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012)
- [x] [VGG](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#vgg-iclr-2015) (ICLR'2015)
- [x] [ResNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnet-cvpr-2016) (CVPR'2016)
- [x] [ResNext](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnext-cvpr-2017) (CVPR'2017)
- [x] [SEResNet](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV1](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018)
- [x] [MobilenetV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018)
- [x] [ResNetV1D](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019)
- [x] [ResNeSt](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020)
- [x] [Swin](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#swin-cvpr-2021) (CVPR'2021)
- [x] [HRFormer](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#hrformer-nips-2021) (NIPS'2021)
- [x] [PVT](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#pvt-iccv-2021) (ICCV'2021)
- [x] [PVTV2](https://mmpose.readthedocs.io/zh_CN/latest/papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)
</details>
### 模型需求
我们将跟进学界的最新进展,并支持更多算法和框架。如果您对 MMPose 有任何功能需求,请随时在 [MMPose Roadmap](https://github.com/open-mmlab/mmpose/issues/9) 中留言。
### 基准测试
#### 训练精度和速度
MMPose 在主流关键点检测基准 COCO 上达到了优越的模型精度和训练速度。
详细信息可见 [基准测试](docs/en/benchmark.md)(英文)。
#### 推理速度
我们总结了 MMPose 中主要模型的复杂度信息和推理速度,包括模型的计算复杂度、参数数量,以及以不同的批处理大小在 CPU 和 GPU 上的推理速度。
详细信息可见 [模型推理速度](docs/zh_cn/inference_speed_summary.md)。
## 数据准备
请参考 [data_preparation.md](docs/en/data_preparation.md)(英文) 进行数据集准备。
## 常见问题
请参考 [FAQ](docs/en/faq.md) 了解其他用户的常见问题。
## 参与贡献
我们非常欢迎用户对于 MMPose 做出的任何贡献,可以参考 [CONTRIBUTION.md](.github/CONTRIBUTING.md) 文件了解更多细节。
## 致谢
MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## 引用
如果您觉得 MMPose 对您的研究有所帮助,请考虑引用它:
```bibtex
@misc{mmpose2020,
title={OpenMMLab Pose Estimation Toolbox and Benchmark},
author={MMPose Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmpose}},
year={2020}
}
```
## 许可证
该项目采用 [Apache 2.0 license](LICENSE) 开源协议。
## OpenMMLab的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),联络 OpenMMLab [官方微信小助手](/docs/en/imgs/wechat_assistant_qrcode.png)或加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=GJP18SjI)
<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/_static/zhihu_qrcode.jpg" height="400"><img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/_static/wechat_qrcode.jpg" height="400"><img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/_static/qq_group_qrcode.jpg" height="400">
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬