ShelvesDetection / model_3.py
brxerq's picture
Update model_3.py
2e7653f verified
raw
history blame
4.87 kB
import os
import cv2
import numpy as np
import importlib.util
import gradio as gr
from PIL import Image
# Load the TensorFlow Lite model
MODEL_DIR = 'model_3'
GRAPH_NAME = 'detect.tflite'
LABELMAP_NAME = 'labelmap.txt'
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
from tflite_runtime.interpreter import load_delegate
else:
from tensorflow.lite.python.interpreter import Interpreter
from tensorflow.lite.python.interpreter import load_delegate
PATH_TO_CKPT = os.path.join(MODEL_DIR, GRAPH_NAME)
PATH_TO_LABELS = os.path.join(MODEL_DIR, LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
if labels[0] == '???':
del(labels[0])
# Load the TensorFlow Lite model
interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
outname = output_details[0]['name']
if ('StatefulPartitionedCall' in outname):
boxes_idx, classes_idx, scores_idx = 1, 3, 0
else:
boxes_idx, classes_idx, scores_idx = 0, 1, 2
def perform_detection(image, interpreter, labels):
imH, imW, _ = image.shape
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, (width, height))
input_data = np.expand_dims(image_resized, axis=0)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0]
classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0]
scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0]
detections = []
for i in range(len(scores)):
if ((scores[i] > 0.5) and (scores[i] <= 1.0)):
ymin = int(max(1, (boxes[i][0] * imH)))
xmin = int(max(1, (boxes[i][1] * imW)))
ymax = int(min(imH, (boxes[i][2] * imH)))
xmax = int(min(imW, (boxes[i][3] * imW)))
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (10, 255, 0), 2)
object_name = labels[int(classes[i])]
label = '%s: %d%%' % (object_name, int(scores[i] * 100))
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
label_ymin = max(ymin, labelSize[1] + 10)
cv2.rectangle(image, (xmin, label_ymin - labelSize[1] - 10), (xmin + labelSize[0], label_ymin + baseLine - 10), (255, 255, 255), cv2.FILLED)
cv2.putText(image, label, (xmin, label_ymin - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)
detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])
return image
def resize_image(image, size=640):
return cv2.resize(image, (size, size))
def detect_image(input_image):
image = np.array(input_image)
resized_image = resize_image(image, size=640) # Resize input image
result_image = perform_detection(resized_image, interpreter, labels)
return Image.fromarray(result_image)
def detect_video(input_video):
cap = cv2.VideoCapture(input_video)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
resized_frame = resize_image(frame, size=640) # Resize each frame
result_frame = perform_detection(resized_frame, interpreter, labels)
frames.append(result_frame)
cap.release()
if not frames:
raise ValueError("No frames were read from the video.")
height, width, layers = frames[0].shape
size = (width, height)
output_video_path = "result_" + os.path.basename(input_video)
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size)
for frame in frames:
out.write(frame)
out.release()
return output_video_path
app = gr.Blocks()
with app:
with gr.Tab("Image Detection"):
gr.Markdown("Upload an image for object detection")
image_input = gr.Image(type="pil", label="Upload an image")
image_output = gr.Image(type="pil", label="Detection Result")
gr.Button("Submit").click(fn=detect_image, inputs=image_input, outputs=image_output)
with gr.Tab("Video Detection"):
gr.Markdown("Upload a video for object detection")
video_input = gr.Video(label="Upload a video")
video_output = gr.Video(label="Detection Result")
gr.Button("Submit").click(fn=detect_video, inputs=video_input, outputs=video_output)
app.launch()