Spaces:
Sleeping
Sleeping
Update model_3.py
Browse files- model_3.py +74 -7
model_3.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
-
# model_3.py
|
2 |
import os
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import importlib.util
|
6 |
-
from PIL import Image
|
7 |
import gradio as gr
|
8 |
-
from
|
9 |
|
|
|
10 |
MODEL_DIR = 'model_3'
|
11 |
GRAPH_NAME = 'detect.tflite'
|
12 |
LABELMAP_NAME = 'labelmap.txt'
|
@@ -14,18 +13,22 @@ LABELMAP_NAME = 'labelmap.txt'
|
|
14 |
pkg = importlib.util.find_spec('tflite_runtime')
|
15 |
if pkg:
|
16 |
from tflite_runtime.interpreter import Interpreter
|
|
|
17 |
else:
|
18 |
from tensorflow.lite.python.interpreter import Interpreter
|
|
|
19 |
|
20 |
PATH_TO_CKPT = os.path.join(MODEL_DIR, GRAPH_NAME)
|
21 |
PATH_TO_LABELS = os.path.join(MODEL_DIR, LABELMAP_NAME)
|
22 |
|
|
|
23 |
with open(PATH_TO_LABELS, 'r') as f:
|
24 |
labels = [line.strip() for line in f.readlines()]
|
25 |
|
26 |
if labels[0] == '???':
|
27 |
del(labels[0])
|
28 |
|
|
|
29 |
interpreter = Interpreter(model_path=PATH_TO_CKPT)
|
30 |
interpreter.allocate_tensors()
|
31 |
|
@@ -35,10 +38,57 @@ height = input_details[0]['shape'][1]
|
|
35 |
width = input_details[0]['shape'][2]
|
36 |
floating_model = (input_details[0]['dtype'] == np.float32)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def detect_image(input_image):
|
39 |
image = np.array(input_image)
|
40 |
-
resized_image =
|
41 |
-
result_image = perform_detection(resized_image, interpreter, labels
|
42 |
return Image.fromarray(result_image)
|
43 |
|
44 |
def detect_video(input_video):
|
@@ -50,8 +100,8 @@ def detect_video(input_video):
|
|
50 |
if not ret:
|
51 |
break
|
52 |
|
53 |
-
resized_frame =
|
54 |
-
result_frame = perform_detection(resized_frame, interpreter, labels
|
55 |
frames.append(result_frame)
|
56 |
|
57 |
cap.release()
|
@@ -70,3 +120,20 @@ def detect_video(input_video):
|
|
70 |
out.release()
|
71 |
|
72 |
return output_video_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import importlib.util
|
|
|
5 |
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
# Load the TensorFlow Lite model
|
9 |
MODEL_DIR = 'model_3'
|
10 |
GRAPH_NAME = 'detect.tflite'
|
11 |
LABELMAP_NAME = 'labelmap.txt'
|
|
|
13 |
pkg = importlib.util.find_spec('tflite_runtime')
|
14 |
if pkg:
|
15 |
from tflite_runtime.interpreter import Interpreter
|
16 |
+
from tflite_runtime.interpreter import load_delegate
|
17 |
else:
|
18 |
from tensorflow.lite.python.interpreter import Interpreter
|
19 |
+
from tensorflow.lite.python.interpreter import load_delegate
|
20 |
|
21 |
PATH_TO_CKPT = os.path.join(MODEL_DIR, GRAPH_NAME)
|
22 |
PATH_TO_LABELS = os.path.join(MODEL_DIR, LABELMAP_NAME)
|
23 |
|
24 |
+
# Load the label map
|
25 |
with open(PATH_TO_LABELS, 'r') as f:
|
26 |
labels = [line.strip() for line in f.readlines()]
|
27 |
|
28 |
if labels[0] == '???':
|
29 |
del(labels[0])
|
30 |
|
31 |
+
# Load the TensorFlow Lite model
|
32 |
interpreter = Interpreter(model_path=PATH_TO_CKPT)
|
33 |
interpreter.allocate_tensors()
|
34 |
|
|
|
38 |
width = input_details[0]['shape'][2]
|
39 |
floating_model = (input_details[0]['dtype'] == np.float32)
|
40 |
|
41 |
+
input_mean = 127.5
|
42 |
+
input_std = 127.5
|
43 |
+
|
44 |
+
outname = output_details[0]['name']
|
45 |
+
if ('StatefulPartitionedCall' in outname):
|
46 |
+
boxes_idx, classes_idx, scores_idx = 1, 3, 0
|
47 |
+
else:
|
48 |
+
boxes_idx, classes_idx, scores_idx = 0, 1, 2
|
49 |
+
|
50 |
+
def perform_detection(image, interpreter, labels):
|
51 |
+
imH, imW, _ = image.shape
|
52 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
53 |
+
image_resized = cv2.resize(image_rgb, (width, height))
|
54 |
+
input_data = np.expand_dims(image_resized, axis=0)
|
55 |
+
|
56 |
+
if floating_model:
|
57 |
+
input_data = (np.float32(input_data) - input_mean) / input_std
|
58 |
+
|
59 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
60 |
+
interpreter.invoke()
|
61 |
+
|
62 |
+
boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0]
|
63 |
+
classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0]
|
64 |
+
scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0]
|
65 |
+
|
66 |
+
detections = []
|
67 |
+
for i in range(len(scores)):
|
68 |
+
if ((scores[i] > 0.5) and (scores[i] <= 1.0)):
|
69 |
+
ymin = int(max(1, (boxes[i][0] * imH)))
|
70 |
+
xmin = int(max(1, (boxes[i][1] * imW)))
|
71 |
+
ymax = int(min(imH, (boxes[i][2] * imH)))
|
72 |
+
xmax = int(min(imW, (boxes[i][3] * imW)))
|
73 |
+
|
74 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (10, 255, 0), 2)
|
75 |
+
object_name = labels[int(classes[i])]
|
76 |
+
label = '%s: %d%%' % (object_name, int(scores[i] * 100))
|
77 |
+
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2)
|
78 |
+
label_ymin = max(ymin, labelSize[1] + 10)
|
79 |
+
cv2.rectangle(image, (xmin, label_ymin - labelSize[1] - 10), (xmin + labelSize[0], label_ymin + baseLine - 10), (255, 255, 255), cv2.FILLED)
|
80 |
+
cv2.putText(image, label, (xmin, label_ymin - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)
|
81 |
+
|
82 |
+
detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])
|
83 |
+
return image
|
84 |
+
|
85 |
+
def resize_image(image, size=640):
|
86 |
+
return cv2.resize(image, (size, size))
|
87 |
+
|
88 |
def detect_image(input_image):
|
89 |
image = np.array(input_image)
|
90 |
+
resized_image = resize_image(image, size=640) # Resize input image
|
91 |
+
result_image = perform_detection(resized_image, interpreter, labels)
|
92 |
return Image.fromarray(result_image)
|
93 |
|
94 |
def detect_video(input_video):
|
|
|
100 |
if not ret:
|
101 |
break
|
102 |
|
103 |
+
resized_frame = resize_image(frame, size=640) # Resize each frame
|
104 |
+
result_frame = perform_detection(resized_frame, interpreter, labels)
|
105 |
frames.append(result_frame)
|
106 |
|
107 |
cap.release()
|
|
|
120 |
out.release()
|
121 |
|
122 |
return output_video_path
|
123 |
+
|
124 |
+
app = gr.Blocks()
|
125 |
+
|
126 |
+
with app:
|
127 |
+
with gr.Tab("Image Detection"):
|
128 |
+
gr.Markdown("Upload an image for object detection")
|
129 |
+
image_input = gr.Image(type="pil", label="Upload an image")
|
130 |
+
image_output = gr.Image(type="pil", label="Detection Result")
|
131 |
+
gr.Button("Submit").click(fn=detect_image, inputs=image_input, outputs=image_output)
|
132 |
+
|
133 |
+
with gr.Tab("Video Detection"):
|
134 |
+
gr.Markdown("Upload a video for object detection")
|
135 |
+
video_input = gr.Video(label="Upload a video")
|
136 |
+
video_output = gr.Video(label="Detection Result")
|
137 |
+
gr.Button("Submit").click(fn=detect_video, inputs=video_input, outputs=video_output)
|
138 |
+
|
139 |
+
app.launch()
|