#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# flake8: noqa E501 | |
import json | |
import os | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.read_evals import get_raw_eval_results | |
from src.utils import get_model_name_from_filepath | |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
raw_data = get_raw_eval_results(results_path, requests_path) | |
all_data_json = [v.to_dict() for v in raw_data] | |
df = pd.DataFrame.from_records(all_data_json) | |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
df = df.sort_values(by=[AutoEvalColumn.solbench.name], ascending=False) | |
df = df[cols].round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return df | |
# def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
# """Creates the different dataframes for the evaluation requestss requestes""" | |
# entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
# all_evals = [] | |
# for entry in entries: | |
# if ".json" in entry: | |
# file_path = os.path.join(save_path, entry) | |
# try: | |
# with open(file_path, encoding='utf-8') as fp: | |
# data = json.load(fp) | |
# except UnicodeDecodeError as e: | |
# print(f"Unicode decoding error in {file_path}: {e}") | |
# continue | |
# # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
# model_name = get_model_name_from_filepath(file_path) | |
# data[EvalQueueColumn.model.name] = make_clickable_model(model_name) | |
# data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
# all_evals.append(data) | |
# elif ".md" not in entry: | |
# # this is a folder | |
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
# for sub_entry in sub_entries: | |
# file_path = os.path.join(save_path, entry, sub_entry) | |
# try: | |
# with open(file_path, encoding='utf-8') as fp: | |
# data = json.load(fp) | |
# except json.JSONDecodeError: | |
# print(f"Error reading {file_path}") | |
# continue | |
# except UnicodeDecodeError as e: | |
# print(f"Unicode decoding error in {file_path}: {e}") | |
# continue | |
# # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
# model_name = get_model_name_from_filepath(file_path) | |
# data[EvalQueueColumn.model.name] = make_clickable_model(model_name) | |
# data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
# all_evals.append(data) | |
# pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
# running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
# finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
# df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
# df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
# df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
# return df_finished[cols], df_running[cols], df_pending[cols] | |
def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation requestss requested.""" | |
all_evals = [] | |
def process_file(file_path): | |
try: | |
with open(file_path, 'r', encoding='utf-8') as fp: | |
data = json.load(fp) | |
except (json.JSONDecodeError, UnicodeDecodeError) as e: | |
print(f"Error reading or decoding {file_path}: {e}") | |
return None | |
model_name = get_model_name_from_filepath(file_path) | |
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.model.name] = make_clickable_model(model_name) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
return data | |
for root, _, files in os.walk(save_path): | |
for file in files: | |
if file.endswith('.json'): | |
file_path = os.path.join(root, file) | |
data = process_file(file_path) | |
if data: | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |