Text_Summary / app.py
bparekh99's picture
Update app.py
1a815a6 verified
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
from urllib.parse import unquote
# Load the T5 model and tokenizer
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")
# Function to summarize text
def summarize_text(text):
input_text = "summarize: " + text
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
summary_ids = model.generate(inputs, max_length=50, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Function to get text from URL query parameters
def get_text_from_url(request: gr.Request):
params = request.query_params
input_text = params.get("text", "")
return unquote(input_text) # Decode URL-encoded text
# Wrap inside a Blocks container
with gr.Blocks() as demo:
textbox = gr.Textbox(lines=5, placeholder="Enter text to summarize...")
output = gr.Textbox(label="Summary")
button = gr.Button("Summarize")
button.click(summarize_text, inputs=textbox, outputs=output)
demo.load(get_text_from_url, outputs=textbox) # Now inside Blocks
demo.launch()