import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from urllib.parse import unquote # Load the T5 model and tokenizer tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") # Function to summarize text def summarize_text(text): input_text = "summarize: " + text inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) summary_ids = model.generate(inputs, max_length=50, num_beams=4, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Function to get text from URL query parameters def get_text_from_url(request: gr.Request): params = request.query_params input_text = params.get("text", "") return unquote(input_text) # Decode URL-encoded text # Wrap inside a Blocks container with gr.Blocks() as demo: textbox = gr.Textbox(lines=5, placeholder="Enter text to summarize...") output = gr.Textbox(label="Summary") button = gr.Button("Summarize") button.click(summarize_text, inputs=textbox, outputs=output) demo.load(get_text_from_url, outputs=textbox) # Now inside Blocks demo.launch()