merve HF staff commited on
Commit
09834f8
1 Parent(s): b58d104

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -27
app.py CHANGED
@@ -23,15 +23,7 @@ nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
23
 
24
 
25
  t2t_gen_model = pipeline(model="boun-tabi-LMG/TURNA", device=0)
26
- # examples =t2t_example, title="Text-to-Text Generation", description="Please enter an instruction with a prefix to generate.")
27
- summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
28
- # examples =long_text, title="Summarization", description="TURNA fine-tuned on MLSUM. Enter a text to summarize below.")
29
- news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
30
- # examples =long_text, title="News Summarization", description="TURNA fine-tuned on News summarization. Enter a news to summarize.")
31
- paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
32
- # examples =long_text,title="Paraphrasing")
33
- paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
34
- # examples =long_text, title="Paraphrasing on Subtitles")
35
 
36
  ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0)
37
  # examples =long_text, title="Text Categorization")
@@ -42,18 +34,11 @@ title_gen = pipeline(model="boun-tabi-LMG/turna_title_generation_mlsum", device=
42
  sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
43
  #examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
44
 
45
- pos_imst = pipeline(model="boun-tabi-LMG/turna_pos_imst", device=0)
46
- # title="Part of Speech Tagging", examples=ner_example,description="Enter a text to generate title to.")
47
  nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
48
- # title="NLI",examples=nli_example, description="Enter two texts to infer entailment.")
49
- pos_boun = pipeline(model="boun-tabi-LMG/turna_pos_boun", device=0)
50
- # examples = ner_example, title="Part of Speech Tagging", description="Enter a text to tag parts of speech (POS).")
51
  stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
52
- # examples=nli_example, title="Semantic Similarity", description="Enter two texts in the input to assess semantic similarity.")
53
- ner_model = pipeline(model="boun-tabi-LMG/turna_ner_milliyet", device=0)
54
- # title="NER WikiANN", examples=ner_example, description="Enter a text for NER.")
55
- ner_wikiann = pipeline(model="boun-tabi-LMG/turna_ner_wikiann", device=0)
56
- #title="NER",examples=ner_example, description="Enter a text for NER.")
57
 
58
 
59
  @spaces.GPU
@@ -75,15 +60,19 @@ def t2t(input):
75
  return t2t_gen_model(input)
76
 
77
  @spaces.GPU
78
- def pos(input, boun=True):
79
- if boun==True:
80
- return pos_boun(input)
81
- else:
82
  return pos_imst(input)
 
 
83
 
84
  @spaces.GPU
85
- def ner(input, wikiann=True):
86
- if wikiann==True:
 
 
87
  return ner_wikiann(input)
88
  else:
89
  return ner_model(input)
@@ -91,6 +80,8 @@ def ner(input, wikiann=True):
91
 
92
  @spaces.GPU
93
  def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"):
 
 
94
  if model_choice=="turna_paraphrasing_tatoeba":
95
  return paraphrasing(input)
96
  else:
@@ -98,6 +89,8 @@ def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"):
98
 
99
  @spaces.GPU
100
  def summarize(input, model_choice="turna_summarization_tr_news"):
 
 
101
  if model_choice=="turna_summarization_tr_news":
102
  return news_sum(input)
103
  else:
@@ -108,8 +101,39 @@ def summarize(input, model_choice="turna_summarization_tr_news"):
108
  with gr.Blocks(theme="shivi/calm_seafoam") as demo:
109
  gr.Markdown("# TURNA 🐦")
110
  gr.Markdown(DESCRIPTION)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  with gr.Tab("Summarization"):
112
- gr.Markdown("TURNA fine-tuned on ummarization. Enter a news to summarize and pick the model.")
113
  with gr.Column():
114
  with gr.Row():
115
  sum_choice = gr.Radio(choices = ["turna_summarization_mlsum", "turna_summarization_tr_news"])
@@ -117,5 +141,5 @@ with gr.Blocks(theme="shivi/calm_seafoam") as demo:
117
  sum_output = gr.Text()
118
  sum_submit = gr.Button()
119
  sum_submit.click(summarize, inputs=[sum_input, sum_choice], outputs=sum_output)
120
- examples = gr.Examples(examples = long_text, inputs = [sum_input, sum_choice], outputs=sum_output, cache_examples=True, fn=summarize)
121
  demo.launch()
 
23
 
24
 
25
  t2t_gen_model = pipeline(model="boun-tabi-LMG/TURNA", device=0)
26
+
 
 
 
 
 
 
 
 
27
 
28
  ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0)
29
  # examples =long_text, title="Text Categorization")
 
34
  sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
35
  #examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
36
 
37
+
 
38
  nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
39
+
 
 
40
  stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
41
+
 
 
 
 
42
 
43
 
44
  @spaces.GPU
 
60
  return t2t_gen_model(input)
61
 
62
  @spaces.GPU
63
+ def pos(input, model_choice="turna_pos_imst"):
64
+ pos_imst = pipeline(model="boun-tabi-LMG/turna_pos_imst", device=0)
65
+ pos_boun = pipeline(model="boun-tabi-LMG/turna_pos_boun", device=0)
66
+ if model_choice=="turna_pos_imst":
67
  return pos_imst(input)
68
+ else:
69
+ return pos_boun(input)
70
 
71
  @spaces.GPU
72
+ def ner(input, model_choice="turna_ner_wikiann"):
73
+ ner_model = pipeline(model="boun-tabi-LMG/turna_ner_milliyet", device=0)
74
+ ner_wikiann = pipeline(model="boun-tabi-LMG/turna_ner_wikiann", device=0)
75
+ if model_choice=="turna_ner_wikiann":
76
  return ner_wikiann(input)
77
  else:
78
  return ner_model(input)
 
80
 
81
  @spaces.GPU
82
  def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"):
83
+ paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
84
+ paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
85
  if model_choice=="turna_paraphrasing_tatoeba":
86
  return paraphrasing(input)
87
  else:
 
89
 
90
  @spaces.GPU
91
  def summarize(input, model_choice="turna_summarization_tr_news"):
92
+ summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
93
+ news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
94
  if model_choice=="turna_summarization_tr_news":
95
  return news_sum(input)
96
  else:
 
101
  with gr.Blocks(theme="shivi/calm_seafoam") as demo:
102
  gr.Markdown("# TURNA 🐦")
103
  gr.Markdown(DESCRIPTION)
104
+ with gr.Tab("POS"):
105
+ gr.Markdown("TURNA fine-tuned on part-of-speech-tagging. Enter text to parse parts of speech and pick the model.")
106
+ with gr.Column():
107
+ with gr.Row():
108
+ pos_choice = gr.Radio(choices = ["turna_pos_imst", "turna_pos_boun"])
109
+ pos_input = gr.Text()
110
+ pos_output = gr.Text()
111
+ pos_submit = gr.Button()
112
+ pos_submit.click(pos, inputs=[pos_input, pos_choice], outputs=pos_output)
113
+ pos_examples = gr.Examples(examples = ner_example, inputs = [pos_input, pos_choice], outputs=pos_output, fn=pos)
114
+
115
+ with gr.Tab("NER"):
116
+ gr.Markdown("TURNA fine-tuned on named entity recognition. Enter text to parse named entities and pick the model.")
117
+ with gr.Column():
118
+ with gr.Row():
119
+ ner_choice = gr.Radio(choices = ["turna_ner_wikiann", "turna_ner_milliyet"])
120
+ ner_input = gr.Text()
121
+ ner_output = gr.Text()
122
+ ner_submit = gr.Button()
123
+ ner_submit.click(ner, inputs=[ner_input, ner_choice], outputs=ner_output)
124
+ ner_examples = gr.Examples(examples = ner_example, inputs = [ner_input, ner_choice], outputs=ner_output, fn=ner)
125
+ with gr.Tab("Paraphrase"):
126
+ gr.Markdown("TURNA fine-tuned on paraphrasing. Enter text to paraphrase and pick the model.")
127
+ with gr.Column():
128
+ with gr.Row():
129
+ paraphrasing_choice = gr.Radio(choices = ["turna_paraphrasing_tatoeba", "turna_paraphrasing_opensubtitles"])
130
+ paraphrasing_input = gr.Text()
131
+ paraphrasing_output = gr.Text()
132
+ paraphrasing_submit = gr.Button()
133
+ paraphrasing_submit.click(paraphrase, inputs=[paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output)
134
+ paraphrase_examples = gr.Examples(examples = long_text, inputs = [paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output, fn=paraphrase)
135
  with gr.Tab("Summarization"):
136
+ gr.Markdown("TURNA fine-tuned on summarization. Enter text to summarize and pick the model.")
137
  with gr.Column():
138
  with gr.Row():
139
  sum_choice = gr.Radio(choices = ["turna_summarization_mlsum", "turna_summarization_tr_news"])
 
141
  sum_output = gr.Text()
142
  sum_submit = gr.Button()
143
  sum_submit.click(summarize, inputs=[sum_input, sum_choice], outputs=sum_output)
144
+ sum_examples = gr.Examples(examples = long_text, inputs = [sum_input, sum_choice], outputs=sum_output, fn=summarize)
145
  demo.launch()