Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -22,37 +22,37 @@ t2t_example = [["Paraphrase: Bu üründen çok memnun kaldım."]]
|
|
22 |
nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
|
23 |
|
24 |
|
25 |
-
t2t_gen_model = pipeline("boun-tabi-LMG/TURNA", device=0)
|
26 |
# examples =t2t_example, title="Text-to-Text Generation", description="Please enter an instruction with a prefix to generate.")
|
27 |
-
summarization_model = pipeline("boun-tabi-LMG/turna_summarization_mlsum", device=0)
|
28 |
# examples =long_text, title="Summarization", description="TURNA fine-tuned on MLSUM. Enter a text to summarize below.")
|
29 |
-
news_sum = pipeline("boun-tabi-LMG/turna_summarization_tr_news", device=0)
|
30 |
# examples =long_text, title="News Summarization", description="TURNA fine-tuned on News summarization. Enter a news to summarize.")
|
31 |
-
paraphrasing = pipeline("boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
|
32 |
# examples =long_text,title="Paraphrasing")
|
33 |
-
paraphrasing_sub = pipeline("boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
|
34 |
# examples =long_text, title="Paraphrasing on Subtitles")
|
35 |
|
36 |
-
ttc = pipeline("boun-tabi-LMG/turna_classification_ttc4900", device=0)
|
37 |
# examples =long_text, title="Text Categorization")
|
38 |
-
product_reviews = pipeline("boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
|
39 |
# examples=sentiment_example, title="Product Reviews Categorization")
|
40 |
-
title_gen = pipeline("boun-tabi-LMG/turna_title_generation_mlsum", device=0)
|
41 |
# examples =long_text, title="Title Generation", description="Enter a text to generate title to.")
|
42 |
-
sentiment_model = pipeline("boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
|
43 |
#examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
|
44 |
|
45 |
-
pos_imst = pipeline("boun-tabi-LMG/turna_pos_imst", device=0)
|
46 |
# title="Part of Speech Tagging", examples=ner_example,description="Enter a text to generate title to.")
|
47 |
-
nli_model = pipeline("boun-tabi-LMG/turna_nli_nli_tr", device=0)
|
48 |
# title="NLI",examples=nli_example, description="Enter two texts to infer entailment.")
|
49 |
-
pos_boun = pipeline("boun-tabi-LMG/turna_pos_boun", device=0)
|
50 |
# examples = ner_example, title="Part of Speech Tagging", description="Enter a text to tag parts of speech (POS).")
|
51 |
-
stsb_model = pipeline("boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
|
52 |
# examples=nli_example, title="Semantic Similarity", description="Enter two texts in the input to assess semantic similarity.")
|
53 |
-
ner_model = pipeline("boun-tabi-LMG/turna_ner_milliyet", device=0)
|
54 |
# title="NER WikiANN", examples=ner_example, description="Enter a text for NER.")
|
55 |
-
ner_wikiann = pipeline("boun-tabi-LMG/turna_ner_wikiann", device=0)
|
56 |
#title="NER",examples=ner_example, description="Enter a text for NER.")
|
57 |
|
58 |
|
|
|
22 |
nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
|
23 |
|
24 |
|
25 |
+
t2t_gen_model = pipeline(model="boun-tabi-LMG/TURNA", device=0)
|
26 |
# examples =t2t_example, title="Text-to-Text Generation", description="Please enter an instruction with a prefix to generate.")
|
27 |
+
summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
|
28 |
# examples =long_text, title="Summarization", description="TURNA fine-tuned on MLSUM. Enter a text to summarize below.")
|
29 |
+
news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
|
30 |
# examples =long_text, title="News Summarization", description="TURNA fine-tuned on News summarization. Enter a news to summarize.")
|
31 |
+
paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
|
32 |
# examples =long_text,title="Paraphrasing")
|
33 |
+
paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
|
34 |
# examples =long_text, title="Paraphrasing on Subtitles")
|
35 |
|
36 |
+
ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0)
|
37 |
# examples =long_text, title="Text Categorization")
|
38 |
+
product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
|
39 |
# examples=sentiment_example, title="Product Reviews Categorization")
|
40 |
+
title_gen = pipeline(model="boun-tabi-LMG/turna_title_generation_mlsum", device=0)
|
41 |
# examples =long_text, title="Title Generation", description="Enter a text to generate title to.")
|
42 |
+
sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
|
43 |
#examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
|
44 |
|
45 |
+
pos_imst = pipeline(model="boun-tabi-LMG/turna_pos_imst", device=0)
|
46 |
# title="Part of Speech Tagging", examples=ner_example,description="Enter a text to generate title to.")
|
47 |
+
nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
|
48 |
# title="NLI",examples=nli_example, description="Enter two texts to infer entailment.")
|
49 |
+
pos_boun = pipeline(model="boun-tabi-LMG/turna_pos_boun", device=0)
|
50 |
# examples = ner_example, title="Part of Speech Tagging", description="Enter a text to tag parts of speech (POS).")
|
51 |
+
stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
|
52 |
# examples=nli_example, title="Semantic Similarity", description="Enter two texts in the input to assess semantic similarity.")
|
53 |
+
ner_model = pipeline(model="boun-tabi-LMG/turna_ner_milliyet", device=0)
|
54 |
# title="NER WikiANN", examples=ner_example, description="Enter a text for NER.")
|
55 |
+
ner_wikiann = pipeline(model="boun-tabi-LMG/turna_ner_wikiann", device=0)
|
56 |
#title="NER",examples=ner_example, description="Enter a text for NER.")
|
57 |
|
58 |
|