merve HF staff commited on
Commit
b58d104
1 Parent(s): 1929524

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -22,37 +22,37 @@ t2t_example = [["Paraphrase: Bu üründen çok memnun kaldım."]]
22
  nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
23
 
24
 
25
- t2t_gen_model = pipeline("boun-tabi-LMG/TURNA", device=0)
26
  # examples =t2t_example, title="Text-to-Text Generation", description="Please enter an instruction with a prefix to generate.")
27
- summarization_model = pipeline("boun-tabi-LMG/turna_summarization_mlsum", device=0)
28
  # examples =long_text, title="Summarization", description="TURNA fine-tuned on MLSUM. Enter a text to summarize below.")
29
- news_sum = pipeline("boun-tabi-LMG/turna_summarization_tr_news", device=0)
30
  # examples =long_text, title="News Summarization", description="TURNA fine-tuned on News summarization. Enter a news to summarize.")
31
- paraphrasing = pipeline("boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
32
  # examples =long_text,title="Paraphrasing")
33
- paraphrasing_sub = pipeline("boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
34
  # examples =long_text, title="Paraphrasing on Subtitles")
35
 
36
- ttc = pipeline("boun-tabi-LMG/turna_classification_ttc4900", device=0)
37
  # examples =long_text, title="Text Categorization")
38
- product_reviews = pipeline("boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
39
  # examples=sentiment_example, title="Product Reviews Categorization")
40
- title_gen = pipeline("boun-tabi-LMG/turna_title_generation_mlsum", device=0)
41
  # examples =long_text, title="Title Generation", description="Enter a text to generate title to.")
42
- sentiment_model = pipeline("boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
43
  #examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
44
 
45
- pos_imst = pipeline("boun-tabi-LMG/turna_pos_imst", device=0)
46
  # title="Part of Speech Tagging", examples=ner_example,description="Enter a text to generate title to.")
47
- nli_model = pipeline("boun-tabi-LMG/turna_nli_nli_tr", device=0)
48
  # title="NLI",examples=nli_example, description="Enter two texts to infer entailment.")
49
- pos_boun = pipeline("boun-tabi-LMG/turna_pos_boun", device=0)
50
  # examples = ner_example, title="Part of Speech Tagging", description="Enter a text to tag parts of speech (POS).")
51
- stsb_model = pipeline("boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
52
  # examples=nli_example, title="Semantic Similarity", description="Enter two texts in the input to assess semantic similarity.")
53
- ner_model = pipeline("boun-tabi-LMG/turna_ner_milliyet", device=0)
54
  # title="NER WikiANN", examples=ner_example, description="Enter a text for NER.")
55
- ner_wikiann = pipeline("boun-tabi-LMG/turna_ner_wikiann", device=0)
56
  #title="NER",examples=ner_example, description="Enter a text for NER.")
57
 
58
 
 
22
  nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
23
 
24
 
25
+ t2t_gen_model = pipeline(model="boun-tabi-LMG/TURNA", device=0)
26
  # examples =t2t_example, title="Text-to-Text Generation", description="Please enter an instruction with a prefix to generate.")
27
+ summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
28
  # examples =long_text, title="Summarization", description="TURNA fine-tuned on MLSUM. Enter a text to summarize below.")
29
+ news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
30
  # examples =long_text, title="News Summarization", description="TURNA fine-tuned on News summarization. Enter a news to summarize.")
31
+ paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
32
  # examples =long_text,title="Paraphrasing")
33
+ paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
34
  # examples =long_text, title="Paraphrasing on Subtitles")
35
 
36
+ ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0)
37
  # examples =long_text, title="Text Categorization")
38
+ product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
39
  # examples=sentiment_example, title="Product Reviews Categorization")
40
+ title_gen = pipeline(model="boun-tabi-LMG/turna_title_generation_mlsum", device=0)
41
  # examples =long_text, title="Title Generation", description="Enter a text to generate title to.")
42
+ sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
43
  #examples=sentiment_example, title="Sentiment Analysis", description="Enter a text to generate title to.")
44
 
45
+ pos_imst = pipeline(model="boun-tabi-LMG/turna_pos_imst", device=0)
46
  # title="Part of Speech Tagging", examples=ner_example,description="Enter a text to generate title to.")
47
+ nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
48
  # title="NLI",examples=nli_example, description="Enter two texts to infer entailment.")
49
+ pos_boun = pipeline(model="boun-tabi-LMG/turna_pos_boun", device=0)
50
  # examples = ner_example, title="Part of Speech Tagging", description="Enter a text to tag parts of speech (POS).")
51
+ stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
52
  # examples=nli_example, title="Semantic Similarity", description="Enter two texts in the input to assess semantic similarity.")
53
+ ner_model = pipeline(model="boun-tabi-LMG/turna_ner_milliyet", device=0)
54
  # title="NER WikiANN", examples=ner_example, description="Enter a text for NER.")
55
+ ner_wikiann = pipeline(model="boun-tabi-LMG/turna_ner_wikiann", device=0)
56
  #title="NER",examples=ner_example, description="Enter a text for NER.")
57
 
58