whisper-demo-french / run_demo_openai.py
bofenghuang's picture
Add new layout
839f7b3
import logging
import warnings
import gradio as gr
import pytube as pt
import psutil
import torch
import whisper
from huggingface_hub import hf_hub_download, model_info
from transformers.utils.logging import disable_progress_bar
warnings.filterwarnings("ignore")
disable_progress_bar()
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
GEN_KWARGS = {
"task": "transcribe",
"language": "fr",
# "without_timestamps": True,
# decode options
# "beam_size": 5,
# "patience": 2,
# disable fallback
# "compression_ratio_threshold": None,
# "logprob_threshold": None,
# vad threshold
# "no_speech_threshold": None,
}
logging.basicConfig(
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# device = 0 if torch.cuda.is_available() else "cpu"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Model will be loaded on device `{device}`")
cached_models = {}
def _print_memory_info():
memory = psutil.virtual_memory()
logger.info(
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
)
def print_cuda_memory_info():
used_mem, tot_mem = torch.cuda.mem_get_info()
logger.info(
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
)
def print_memory_info():
_print_memory_info()
print_cuda_memory_info()
def maybe_load_cached_pipeline(model_name):
model = cached_models.get(model_name)
if model is None:
downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
model = whisper.load_model(downloaded_model_path, device=device)
logger.info(f"`{model_name}` has been loaded on device `{device}`")
print_memory_info()
cached_models[model_name] = model
return model
def infer(model, filename, with_timestamps):
if with_timestamps:
model_outputs = model.transcribe(filename, **GEN_KWARGS)
return "\n\n".join(
[
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
for segment in model_outputs["segments"]
]
)
else:
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
def download_from_youtube(yt_url, downloaded_filename="audio.wav"):
yt = pt.YouTube(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename="audio.mp3")
stream.download(filename=downloaded_filename)
return downloaded_filename
def transcribe(microphone, file_upload, yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
warn_output = ""
if (microphone is not None) and (file_upload is not None) and yt_url:
warn_output = (
"WARNING: You've uploaded an audio file, used the microphone, and pasted a YouTube URL. "
"The recorded file from the microphone will be used, the uploaded audio and the YouTube URL will be discarded.\n"
)
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
if (microphone is not None) and yt_url:
warn_output = (
"WARNING: You've used the microphone and pasted a YouTube URL. "
"The recorded file from the microphone will be used and the YouTube URL will be discarded.\n"
)
if (file_upload is not None) and yt_url:
warn_output = (
"WARNING: You've uploaded an audio file and pasted a YouTube URL. "
"The uploaded audio will be used and the YouTube URL will be discarded.\n"
)
elif (microphone is None) and (file_upload is None) and (not yt_url):
return "ERROR: You have to either use the microphone, upload an audio file or paste a YouTube URL"
if microphone is not None:
file = microphone
logging_prefix = f"Transcription by `{model_name}` of microphone:"
elif file_upload is not None:
file = file_upload
logging_prefix = f"Transcription by `{model_name}` of uploaded file:"
else:
file = download_from_youtube(yt_url)
logging_prefix = f'Transcription by `{model_name}` of "{yt_url}":'
model = maybe_load_cached_pipeline(model_name)
# text = model.transcribe(file, **GEN_KWARGS)["text"]
text = infer(model, file, with_timestamps)
logger.info(logging_prefix + "\n" + text + "\n")
return warn_output + text
# load default model
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
demo = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True),
gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True),
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
gr.Checkbox(label="With timestamps?"),
],
outputs=gr.outputs.Textbox(label="Transcription"),
layout="horizontal",
theme="huggingface",
title="Whisper French Demo 🇫🇷",
description=(
"**Transcribe long-form microphone, audio inputs or YouTube videos with the click of a button!** \n\nDemo uses the the fine-tuned"
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
demo.launch(enable_queue=True)