whisper-demo-french / run_demo_hf.py
bofenghuang's picture
up
cc46c30
import logging
import warnings
import gradio as gr
import pytube as pt
import torch
from huggingface_hub import model_info
from transformers import pipeline
from transformers.utils.logging import disable_progress_bar
warnings.filterwarnings("ignore")
disable_progress_bar()
# MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
MODEL_NAME = "bofenghuang/whisper-large-v3-french"
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/whisper-large-v3-ft-french-pnc-ep5-bs280-lr4e6-wd001-audioaug-specaug"
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/tmp_model"
# MODEL_NAME = "/projects/bhuang/models/asr/public/whisper-large-v3-french"
CHUNK_LENGTH_S = 30
logging.basicConfig(
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Model will be loaded on device `{device}`")
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=CHUNK_LENGTH_S,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
logger.info(f"Transcription: {text}")
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
logger.info(f'Transcription of "{yt_url}": {text}')
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.components.Audio(sources="microphone", type="filepath", label="Record"),
gr.components.Audio(sources="upload", type="filepath", label="Upload File"),
],
# outputs="text",
outputs=gr.components.Textbox(label="Transcription", show_copy_button=True),
# layout="horizontal",
theme="huggingface",
title="Whisper French Demo πŸ‡«πŸ‡· : Transcribe Audio",
# description=(
# "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
# f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
# " of arbitrary length."
# ),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
# outputs=["html", "text"],
outputs=[
gr.components.HTML(label="YouTube Page"),
gr.components.Textbox(label="Transcription", show_copy_button=True),
],
# layout="horizontal",
theme="huggingface",
title="Whisper French Demo πŸ‡«πŸ‡· : Transcribe YouTube",
# description=(
# "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files of"
# " arbitrary length."
# ),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
# demo.launch(enable_queue=True)
# see https://github.com/gradio-app/gradio/issues/2551
demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, share=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False)