Spaces:
Sleeping
Sleeping
#! /usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2022 Bofeng Huang | |
import datetime | |
import logging | |
import os | |
import re | |
import warnings | |
import gradio as gr | |
import pandas as pd | |
import psutil | |
import pytube as pt | |
import torch | |
# import whisper | |
from faster_whisper import WhisperModel | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from transformers.utils.logging import disable_progress_bar | |
import nltk | |
nltk.download("punkt") | |
from nltk.tokenize import sent_tokenize | |
warnings.filterwarnings("ignore") | |
disable_progress_bar() | |
# DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french" | |
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v3-french" | |
# CHECKPOINT_FILENAME = "checkpoint_openai.pt" | |
GEN_KWARGS = { | |
"task": "transcribe", | |
"language": "fr", | |
# "without_timestamps": True, | |
# decode options | |
# "beam_size": 1, | |
# "patience": 2, | |
# disable fallback | |
# "compression_ratio_threshold": None, | |
# "logprob_threshold": None, | |
# vad threshold | |
# "no_speech_threshold": None, | |
# "condition_on_previous_text": False, # todo: only for distilled version | |
"vad_filter": True, | |
} | |
logging.basicConfig( | |
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", | |
datefmt="%Y-%m-%dT%H:%M:%SZ", | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
# device = 0 if torch.cuda.is_available() else "cpu" | |
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Model will be loaded on device `{device}`") | |
cached_models = {} | |
def format_timestamp(seconds): | |
return str(datetime.timedelta(seconds=round(seconds))) | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' " </center>" | |
) | |
return HTML_str | |
def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"): | |
yt = pt.YouTube(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
# stream.download(filename="audio.mp3") | |
stream.download(filename=downloaded_filename) | |
return downloaded_filename | |
def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"): | |
yt = pt.YouTube(yt_url) | |
stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first() | |
stream.download(filename=downloaded_filename) | |
logger.info(f"Download YouTube video from {yt_url}") | |
return downloaded_filename | |
def _print_memory_info(): | |
memory = psutil.virtual_memory() | |
logger.info( | |
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb" | |
) | |
def _print_cuda_memory_info(): | |
used_mem, tot_mem = torch.cuda.mem_get_info() | |
logger.info( | |
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb" | |
) | |
def print_memory_info(): | |
_print_memory_info() | |
_print_cuda_memory_info() | |
def maybe_load_cached_pipeline(model_name): | |
model = cached_models.get(model_name) | |
if model is None: | |
# downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME) | |
# downloaded_model_path = snapshot_download(repo_id=model_name) | |
downloaded_model_path = snapshot_download(repo_id=model_name, allow_patterns="ctranslate2/*") | |
downloaded_model_path = f"{downloaded_model_path}/ctranslate2" | |
# model = whisper.load_model(downloaded_model_path, device=device) | |
model = WhisperModel(downloaded_model_path, device=device, compute_type="float16") | |
logger.info(f"`{model_name}` has been loaded on device `{device}`") | |
print_memory_info() | |
cached_models[model_name] = model | |
return model | |
def infer(model, filename, with_timestamps, return_df=False): | |
if with_timestamps: | |
# model_outputs = model.transcribe(filename, **GEN_KWARGS) | |
model_outputs, _ = model.transcribe(filename, **GEN_KWARGS) | |
model_outputs = [segment._asdict() for segment in model_outputs] | |
if return_df: | |
# model_outputs_df = pd.DataFrame(model_outputs["segments"]) | |
model_outputs_df = pd.DataFrame(model_outputs) | |
# print(model_outputs) | |
# print(model_outputs_df) | |
# print(model_outputs_df.info(verbose=True)) | |
model_outputs_df = model_outputs_df[["start", "end", "text"]] | |
model_outputs_df["start"] = model_outputs_df["start"].map(format_timestamp) | |
model_outputs_df["end"] = model_outputs_df["end"].map(format_timestamp) | |
model_outputs_df["text"] = model_outputs_df["text"].str.strip() | |
return model_outputs_df | |
else: | |
return "\n\n".join( | |
[ | |
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}' | |
# for segment in model_outputs["segments"] | |
for segment in model_outputs | |
] | |
) | |
else: | |
# text = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"] | |
model_outputs, _ = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS) | |
text = " ".join([segment.text for segment in model_outputs]) | |
if return_df: | |
return pd.DataFrame({"text": sent_tokenize(text)}) | |
else: | |
return text | |
# def transcribe(microphone, file_upload, with_timestamps, model_name=DEFAULT_MODEL_NAME): | |
def transcribe(audio_file_path, with_timestamps, model_name=DEFAULT_MODEL_NAME): | |
# warn_output = "" | |
# if (microphone is not None) and (file_upload is not None): | |
# warn_output = ( | |
# "WARNING: You've uploaded an audio file and used the microphone. " | |
# "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
# ) | |
# elif (microphone is None) and (file_upload is None): | |
# return "ERROR: You have to either use the microphone or upload an audio file" | |
# audio_file_path = microphone if microphone is not None else file_upload | |
model = maybe_load_cached_pipeline(model_name) | |
# text = model.transcribe(audio_file_path, **GEN_KWARGS)["text"] | |
# text = infer(model, audio_file_path, with_timestamps) | |
text = infer(model, audio_file_path, with_timestamps, return_df=True) | |
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n') | |
# return warn_output + text | |
return text | |
def yt_transcribe(yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME): | |
# html_embed_str = _return_yt_html_embed(yt_url) | |
audio_file_path = download_audio_from_youtube(yt_url) | |
model = maybe_load_cached_pipeline(model_name) | |
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"] | |
# text = infer(model, audio_file_path, with_timestamps) | |
text = infer(model, audio_file_path, with_timestamps, return_df=True) | |
logger.info(f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n') | |
# return html_embed_str, text | |
return text | |
def video_transcribe(video_file_path, with_timestamps, model_name=DEFAULT_MODEL_NAME): | |
if video_file_path is None: | |
raise ValueError("Failed to transcribe video as no video_file_path has been defined") | |
audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path) | |
os.system(f'ffmpeg -hide_banner -loglevel error -y -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"') | |
model = maybe_load_cached_pipeline(model_name) | |
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"] | |
text = infer(model, audio_file_path, with_timestamps, return_df=True) | |
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n') | |
return text | |
# load default model | |
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME) | |
# default_text_output_df = pd.DataFrame(columns=["start", "end", "text"]) | |
default_text_output_df = pd.DataFrame(columns=["text"]) | |
with gr.Blocks() as demo: | |
with gr.Tab("Transcribe Audio"): | |
gr.Markdown( | |
f""" | |
<div> | |
<h1 style='text-align: center'>Whisper French Demo: Transcribe Audio</h1> | |
</div> | |
Transcribe long-form microphone or audio inputs! | |
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe audio files of arbitrary length. | |
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2). | |
""" | |
) | |
# microphone_input = gr.Audio(sources="microphone", type="filepath", label="Record") | |
# upload_input = gr.Audio(sources="upload", type="filepath", label="Upload File") | |
audio_file_path = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or upload file") | |
with_timestamps_input = gr.Checkbox(label="With timestamps?") | |
microphone_transcribe_btn = gr.Button("Transcribe Audio") | |
# gr.Markdown(''' | |
# Here you will get generated transcrit. | |
# ''') | |
# microphone_text_output = gr.outputs.Textbox(label="Transcription") | |
text_output_df2 = gr.DataFrame( | |
value=default_text_output_df, | |
label="Transcription", | |
wrap=True, | |
) | |
microphone_transcribe_btn.click( | |
transcribe, inputs=[audio_file_path, with_timestamps_input], outputs=text_output_df2 | |
) | |
# with gr.Tab("Transcribe YouTube"): | |
# gr.Markdown( | |
# f""" | |
# <div> | |
# <h1 style='text-align: center'>Whisper French Demo: Transcribe YouTube</h1> | |
# </div> | |
# Transcribe long-form YouTube videos! | |
# Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length. | |
# """ | |
# ) | |
# yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL") | |
# with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True) | |
# yt_transcribe_btn = gr.Button("Transcribe YouTube") | |
# # yt_text_output = gr.outputs.Textbox(label="Transcription") | |
# text_output_df3 = gr.DataFrame( | |
# value=default_text_output_df, | |
# label="Transcription", | |
# row_count=(0, "dynamic"), | |
# max_rows=10, | |
# wrap=True, | |
# overflow_row_behaviour="paginate", | |
# ) | |
# # yt_html_output = gr.outputs.HTML(label="YouTube Page") | |
# yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3]) | |
with gr.Tab("Transcribe Video"): | |
gr.Markdown( | |
f""" | |
<div> | |
<h1 style='text-align: center'>Whisper French Demo: Transcribe Video</h1> | |
</div> | |
Transcribe long-form YouTube videos or uploaded video inputs! | |
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length. | |
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2). | |
""" | |
) | |
yt_link_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL") | |
download_youtube_btn = gr.Button("Download Youtube video") | |
downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False) | |
download_youtube_btn.click(download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output]) | |
with_timestamps_input3 = gr.Checkbox(label="With timestamps?", value=True) | |
video_transcribe_btn = gr.Button("Transcribe video") | |
text_output_df = gr.DataFrame( | |
value=default_text_output_df, | |
label="Transcription", | |
wrap=True, | |
) | |
video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output, with_timestamps_input3], outputs=[text_output_df]) | |
# demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False) | |
demo.queue(max_size=10).launch() | |