Spaces:
Running
Running
import logging | |
import warnings | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.utils.logging import disable_progress_bar | |
warnings.filterwarnings("ignore") | |
disable_progress_bar() | |
logging.basicConfig( | |
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", | |
datefmt="%Y-%m-%dT%H:%M:%SZ", | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
pipe = pipeline(model="bofenghuang/asr-wav2vec2-ctc-french") | |
logger.info("ASR pipeline has been initialized") | |
def transcribe(audio, state=""): | |
text = pipe(audio, chunk_length_s=5, stride_length_s=1)["text"] | |
state += text + " " | |
logger.info(f"Transcription for {audio}: {state}") | |
return state, state | |
# streaming mode | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Audio(source="microphone", type="filepath", streaming=True, label="Record something..."), "state"], | |
outputs=["textbox", "state"], | |
title="Realtime Speech-to-Text in French", | |
description="Realtime demo for French automatic speech recognition.", | |
allow_flagging="never", | |
live=True, | |
) | |
# iface.launch(server_name="0.0.0.0", debug=True, share=True) | |
iface.launch() | |