InternVL / app.py
gulixin0922's picture
Update app.py
ccc043d verified
raw
history blame
21.7 kB
import spaces
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re
import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from constants import LOGDIR
from utils import (
build_logger,
server_error_msg,
violates_moderation,
moderation_msg,
load_image_from_base64,
get_log_filename,
)
from conversation import Conversation
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "InternVL-Chat Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
@spaces.GPU(duration=10)
def make_zerogpu_happy():
pass
def write2file(path, content):
lock = FileLock(f"{path}.lock")
with lock:
with open(path, "a") as fout:
fout.write(content)
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def init_state(state=None):
if state is not None:
del state
return Conversation()
def find_bounding_boxes(state, response):
pattern = re.compile(r"<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>")
matches = pattern.findall(response)
results = []
for match in matches:
results.append((match[0], eval(match[1])))
returned_image = None
latest_image = state.get_images(source=state.USER)[-1]
returned_image = latest_image.copy()
width, height = returned_image.size
draw = ImageDraw.Draw(returned_image)
for result in results:
line_width = max(1, int(min(width, height) / 200))
random_color = (
random.randint(0, 128),
random.randint(0, 128),
random.randint(0, 128),
)
category_name, coordinates = result
coordinates = [
(
float(x[0]) / 1000,
float(x[1]) / 1000,
float(x[2]) / 1000,
float(x[3]) / 1000,
)
for x in coordinates
]
coordinates = [
(
int(x[0] * width),
int(x[1] * height),
int(x[2] * width),
int(x[3] * height),
)
for x in coordinates
]
for box in coordinates:
draw.rectangle(box, outline=random_color, width=line_width)
font = ImageFont.truetype("assets/SimHei.ttf", int(20 * line_width / 2))
text_size = font.getbbox(category_name)
text_width, text_height = (
text_size[2] - text_size[0],
text_size[3] - text_size[1],
)
text_position = (box[0], max(0, box[1] - text_height))
draw.rectangle(
[
text_position,
(text_position[0] + text_width, text_position[1] + text_height),
],
fill=random_color,
)
draw.text(text_position, category_name, fill="white", font=font)
return returned_image if len(matches) > 0 else None
def vote_last_response(state, liked, request: gr.Request):
conv_data = {
"tstamp": round(time.time(), 4),
"like": liked,
"model": 'InternVL2.5-78B',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, True, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, False, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def vote_selected_response(
state, request: gr.Request, data: gr.LikeData
):
logger.info(
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
)
conv_data = {
"tstamp": round(time.time(), 4),
"like": data.liked,
"index": data.index,
"model": 'InternVL2.5-78B',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
return
def flag_last_response(state, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
# state.messages[-1][-1] = None
state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1)
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = init_state()
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def add_text(state, message, system_prompt, request: gr.Request):
print(f"state: {state}")
if not state:
state = init_state()
images = message.get("files", [])
text = message.get("text", "").strip()
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
# import pdb; pdb.set_trace()
textbox = gr.MultimodalTextbox(value=None, interactive=False)
if len(text) <= 0 and len(images) == 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
textbox = gr.MultimodalTextbox(
value={"text": moderation_msg}, interactive=True
)
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
images = [Image.open(path).convert("RGB") for path in images]
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
state = init_state(state)
state.set_system_message(system_prompt)
state.append_message(Conversation.USER, text, images)
state.skip_next = False
return (state, state.to_gradio_chatbot(), textbox) + (
disable_btn,
) * 5
def http_bot(
state,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
max_input_tiles,
request: gr.Request,
):
model_name = 'InternVL2.5-78B'
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if hasattr(state, "skip_next") and state.skip_next:
# This generate call is skipped due to invalid inputs
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (no_change_btn,) * 5
return
worker_addr = os.environ.get("WORKER_ADDR", "")
api_token = os.environ.get("API_TOKEN", "")
headers = {"Authorization": f"{api_token}", "Content-Type": "application/json"}
# No available worker
if worker_addr == "":
# state.messages[-1][-1] = server_error_msg
state.update_message(Conversation.ASSISTANT, server_error_msg)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
all_images = state.get_images(source=state.USER)
all_image_paths = [state.save_image(image) for image in all_images]
# Make requests
pload = {
"model": model_name,
"messages": state.get_prompt_v2(inlude_image=True, max_dynamic_patch=max_input_tiles),
"temperature": float(temperature),
"top_p": float(top_p),
"max_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"stream": True
}
logger.info(f"==== request ====\n{pload}")
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(worker_addr, json=pload, headers=headers, stream=True, timeout=40)
finnal_output = ''
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\n"):
if chunk:
chunk = chunk.decode()
if chunk == 'data: [DONE]':
break
if chunk.startswith("data:"):
chunk = chunk[5:]
chunk = json.loads(chunk)
output = chunk['choices'][0]['delta']['content']
finnal_output += output
state.update_message(Conversation.ASSISTANT, finnal_output + state.streaming_placeholder, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
except requests.exceptions.RequestException as e:
state.update_message(Conversation.ASSISTANT, server_error_msg, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
ai_response = state.return_last_message()
if "<ref>" in ai_response:
returned_image = find_bounding_boxes(state, ai_response)
returned_image = [returned_image] if returned_image else []
state.update_message(Conversation.ASSISTANT, ai_response, returned_image)
state.end_of_current_turn()
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{finnal_output}")
data = {
"tstamp": round(finish_tstamp, 4),
"like": None,
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_paths,
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(data) + "\n")
title_html = """
<h2> <span class="gradient-text" id="text">InternVL2.5</span><span class="plain-text">: Better than the Best—Expanding Performance Boundaries of Open-Source Multimodal Models with the Progressive Scaling Strategy</span></h2>
<a href="https://internvl.github.io/blog/2024-07-02-InternVL-2.0/">[📜 InternVL2 Blog]</a>
<a href="https://internvl.opengvlab.com/">[🌟 Official Demo]</a>
<a href="https://github.com/OpenGVLab/InternVL?tab=readme-ov-file#quick-start-with-huggingface">[🚀 Quick Start]</a>
<a href="https://github.com/OpenGVLab/InternVL/blob/main/document/How_to_use_InternVL_API.md">[🌐 API]</a>
"""
# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
min-width: min(120px,100%);
}
.gradient-text {
font-size: 28px;
width: auto;
font-weight: bold;
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
background-clip: text;
-webkit-background-clip: text;
color: transparent;
}
.plain-text {
font-size: 22px;
width: auto;
font-weight: bold;
}
"""
js = """
function createWaveAnimation() {
const text = document.getElementById('text');
var i = 0;
setInterval(function() {
const colors = [
'red, orange, yellow, green, blue, indigo, violet, purple',
'orange, yellow, green, blue, indigo, violet, purple, red',
'yellow, green, blue, indigo, violet, purple, red, orange',
'green, blue, indigo, violet, purple, red, orange, yellow',
'blue, indigo, violet, purple, red, orange, yellow, green',
'indigo, violet, purple, red, orange, yellow, green, blue',
'violet, purple, red, orange, yellow, green, blue, indigo',
'purple, red, orange, yellow, green, blue, indigo, violet',
];
const angle = 45;
const colorIndex = i % colors.length;
text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
text.style.webkitBackgroundClip = 'text';
text.style.backgroundClip = 'text';
text.style.color = 'transparent';
text.style.fontSize = '28px';
text.style.width = 'auto';
text.textContent = 'InternVL2';
text.style.fontWeight = 'bold';
i += 1;
}, 200);
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
// console.log(url_params);
// console.log('hello world...');
// console.log(window.location.search);
// console.log('hello world...');
// alert(window.location.search)
// alert(url_params);
return url_params;
}
"""
def build_demo(embed_mode):
textbox = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(
title="InternVL-Chat",
theme=gr.themes.Default(),
css=block_css,
) as demo:
state = gr.State()
if not embed_mode:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Settings", open=False) as setting_row:
system_prompt = gr.Textbox(
value="请尽可能详细地回答用户的问题。",
label="System Prompt",
interactive=True,
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.02,
interactive=True,
label="Repetition penalty",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
max_input_tiles = gr.Slider(
minimum=1,
maximum=32,
value=12,
step=1,
interactive=True,
label="Max input tiles (control the image size)",
)
examples = gr.Examples(
examples=[
[
{
"files": [
"gallery/prod_9.jpg",
],
"text": "What's at the far end of the image?",
}
],
[
{
"files": [
"gallery/1-2.PNG",
],
"text": "用python实现这个流程图",
}
],
[
{
"files": [
"gallery/15.PNG",
],
"text": "请帮我分析一下这张图内容",
}
],
],
inputs=[textbox],
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="InternVL2",
height=580,
show_copy_button=True,
show_share_button=True,
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="🔄 Regenerate", interactive=False
)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
chatbot.like(
vote_selected_response,
[state],
[],
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate,
[state, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
logger.info(args)
demo = build_demo(args.embed)
demo.queue(api_open=False).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=args.concurrency_count,
)