Spaces:
Sleeping
Sleeping
blancamartin
commited on
Commit
·
c31bf4e
1
Parent(s):
e40a5c5
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.basics import *
|
2 |
+
from fastai.vision import models
|
3 |
+
from fastai.vision.all import *
|
4 |
+
from fastai.metrics import *
|
5 |
+
from fastai.data.all import *
|
6 |
+
from fastai.callback import *
|
7 |
+
|
8 |
+
|
9 |
+
from pathlib import Path
|
10 |
+
import random
|
11 |
+
|
12 |
+
import PIL
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
|
18 |
+
# Cargamos el learner
|
19 |
+
#learn = load_learner('export.pkl')
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
model = torch.jit.load("unet.pth")
|
22 |
+
model = model.cpu()
|
23 |
+
model.eval()
|
24 |
+
|
25 |
+
# Definimos las etiquetas de nuestro modelo
|
26 |
+
#labels = learn.dls.vocab
|
27 |
+
|
28 |
+
def transform_image(image):
|
29 |
+
my_transforms = transforms.Compose([transforms.ToTensor(),
|
30 |
+
transforms.Normalize(
|
31 |
+
[0.485, 0.456, 0.406],
|
32 |
+
[0.229, 0.224, 0.225])])
|
33 |
+
image_aux = image
|
34 |
+
return my_transforms(image_aux).unsqueeze(0).to(device)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
# Definimos una función que se encarga de llevar a cabo las predicciones
|
39 |
+
def predict(img):
|
40 |
+
img = PILImage.create(img)
|
41 |
+
|
42 |
+
image = transforms.Resize((480,640))(img)
|
43 |
+
tensor = transform_image(image=image)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
outputs = model(tensor)
|
47 |
+
|
48 |
+
outputs = torch.argmax(outputs,1)
|
49 |
+
|
50 |
+
mask = np.array(outputs.cpu())
|
51 |
+
mask[mask==0]=255 #grape
|
52 |
+
mask[mask==1]=150 #leaves
|
53 |
+
mask[mask==2]=76 #pole
|
54 |
+
mask[mask==2]=74 #pole
|
55 |
+
mask[mask==3]=29 #wood
|
56 |
+
mask[mask==3]=25 #wood
|
57 |
+
|
58 |
+
mask=np.reshape(mask,(480,640))
|
59 |
+
|
60 |
+
return Image.fromarray(mask.astype('uint8'))
|
61 |
+
#pred,pred_idx,probs = learn.predict(img)
|
62 |
+
#return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
63 |
+
|
64 |
+
|
65 |
+
# Creamos la interfaz y la lanzamos.
|
66 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False)
|