blancamartin commited on
Commit
e40a5c5
·
1 Parent(s): 6f65258

Delete aap.py

Browse files
Files changed (1) hide show
  1. aap.py +0 -66
aap.py DELETED
@@ -1,66 +0,0 @@
1
- from fastai.basics import *
2
- from fastai.vision import models
3
- from fastai.vision.all import *
4
- from fastai.metrics import *
5
- from fastai.data.all import *
6
- from fastai.callback import *
7
-
8
-
9
- from pathlib import Path
10
- import random
11
-
12
- import PIL
13
- import torchvision.transforms as transforms
14
-
15
- import gradio as gr
16
-
17
-
18
- # Cargamos el learner
19
- #learn = load_learner('export.pkl')
20
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
- model = torch.jit.load("unet.pth")
22
- model = model.cpu()
23
- model.eval()
24
-
25
- # Definimos las etiquetas de nuestro modelo
26
- #labels = learn.dls.vocab
27
-
28
- def transform_image(image):
29
- my_transforms = transforms.Compose([transforms.ToTensor(),
30
- transforms.Normalize(
31
- [0.485, 0.456, 0.406],
32
- [0.229, 0.224, 0.225])])
33
- image_aux = image
34
- return my_transforms(image_aux).unsqueeze(0).to(device)
35
-
36
-
37
-
38
- # Definimos una función que se encarga de llevar a cabo las predicciones
39
- def predict(img):
40
- img = PILImage.create(img)
41
-
42
- image = transforms.Resize((480,640))(img)
43
- tensor = transform_image(image=image)
44
-
45
- with torch.no_grad():
46
- outputs = model(tensor)
47
-
48
- outputs = torch.argmax(outputs,1)
49
-
50
- mask = np.array(outputs.cpu())
51
- mask[mask==0]=255 #grape
52
- mask[mask==1]=150 #leaves
53
- mask[mask==2]=76 #pole
54
- mask[mask==2]=74 #pole
55
- mask[mask==3]=29 #wood
56
- mask[mask==3]=25 #wood
57
-
58
- mask=np.reshape(mask,(480,640))
59
-
60
- return Image.fromarray(mask.astype('uint8'))
61
- #pred,pred_idx,probs = learn.predict(img)
62
- #return {labels[i]: float(probs[i]) for i in range(len(labels))}
63
-
64
-
65
- # Creamos la interfaz y la lanzamos.
66
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False)