bitcloud2's picture
working app_dev. hopefully working app
b0ed2e6
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from my_agent import SmolAgent # Import the new agent
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def instantiate_agent():
"""Instantiates the agent."""
try:
# agent = BasicAgent()
agent = SmolAgent() # Use the new agent
return agent, None # Return agent and no error
except Exception as e:
print(f"Error instantiating agent: {e}")
return None, f"Error initializing agent: {e}" # Return None and error message
def fetch_questions(questions_url: str):
"""Fetches questions from the specified URL."""
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return None, "Fetched questions list is empty or invalid format."
print(f"Fetched {len(questions_data)} questions.")
return questions_data, None # Return data and no error
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return None, f"Error fetching questions: {e}"
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return None, f"Error decoding server response for questions: {e}"
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return None, f"An unexpected error occurred fetching questions: {e}"
def run_agent_on_questions(agent, questions_data):
"""Runs the agent on each question and collects results."""
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
return answers_payload, results_log
def dev_run():
"""
Fetches all questions, runs the BasicAgent on them,
and displays the results.
"""
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
agent, error_message = instantiate_agent()
if error_message:
return error_message, None # Return error message and None for results_df
# 2. Fetch Questions
questions_data, error_message = fetch_questions(questions_url)
if error_message:
# Return the error message from fetch_questions and None for the results DataFrame
return error_message, None
# 3. Run your Agent
answers_payload, results_log = run_agent_on_questions(agent, questions_data)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
return answers_payload, pd.DataFrame(results_log)
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
agent, error_message = instantiate_agent()
if error_message:
return error_message, None # Return error message and None for results_df
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
questions_data, error_message = fetch_questions(questions_url)
if error_message:
# Return the error message from fetch_questions and None for the results DataFrame
return error_message, None
# 3. Run your Agent
answers_payload, results_log = run_agent_on_questions(agent, questions_data)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# # --- Build Gradio Interface using Blocks ---
# with gr.Blocks() as demo:
# gr.Markdown("# Basic Agent Evaluation Runner")
# gr.Markdown(
# """
# **Instructions:**
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
# ---
# **Disclaimers:**
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
# """
# )
# gr.LoginButton()
# run_button = gr.Button("Run Evaluation & Submit All Answers")
# status_output = gr.Textbox(
# label="Run Status / Submission Result", lines=5, interactive=False
# )
# # Removed max_rows=10 from DataFrame constructor
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# if __name__ == "__main__":
# print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# # Check for SPACE_HOST and SPACE_ID at startup for information
# space_host_startup = os.getenv("SPACE_HOST")
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# if space_host_startup:
# print(f"✅ SPACE_HOST found: {space_host_startup}")
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
# else:
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
# if space_id_startup: # Print repo URLs if SPACE_ID is found
# print(f"✅ SPACE_ID found: {space_id_startup}")
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
# print(
# f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
# )
# else:
# print(
# "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
# )
# print("-" * (60 + len(" App Starting ")) + "\n")
# print("Launching Gradio Interface for Basic Agent Evaluation...")
# demo.launch(debug=True, share=False)
if __name__ == "__main__":
answers_payload, results_log = dev_run()
print(answers_payload)
print(results_log)