Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load the model locally | |
| model_name = "bigchestnut/mob213" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # Prepare input prompt | |
| prompt = system_message + "\n" + "\n".join( | |
| [f"User: {h[0]}\nAssistant: {h[1]}" for h in history if h[0] and h[1]] | |
| ) + f"\nUser: {message}\nAssistant:" | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model.generate(**inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |