import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model locally model_name = "bigchestnut/mob213" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) def respond(message, history, system_message, max_tokens, temperature, top_p): # Prepare input prompt prompt = system_message + "\n" + "\n".join( [f"User: {h[0]}\nAssistant: {h[1]}" for h in history if h[0] and h[1]] ) + f"\nUser: {message}\nAssistant:" inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=True)