Spaces:
Runtime error
Runtime error
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
def analyze_stock(ticker: str) -> dict: # type: ignore[type-arg] | |
""" | |
A tool that analyze stock data. | |
Args: | |
ticker: A string representing stock ticker(e.g., 'AMD') | |
""" | |
import os | |
from datetime import datetime, timedelta | |
import numpy as np | |
import pandas as pd | |
import yfinance as yf | |
from pytz import timezone # type: ignore | |
stock = yf.Ticker(ticker) | |
# Get historical data (1 year of data to ensure we have enough for 200-day MA) | |
end_date = datetime.now(timezone("UTC")) | |
start_date = end_date - timedelta(days=365) | |
hist = stock.history(start=start_date, end=end_date) | |
# Ensure we have data | |
if hist.empty: | |
return {"error": "No historical data available for the specified ticker."} | |
# Compute basic statistics and additional metrics | |
current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1]) | |
year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max()) | |
year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min()) | |
# Calculate 50-day and 200-day moving averages | |
ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1] | |
ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1] | |
# Calculate YTD price change and percent change | |
ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC")) | |
ytd_data = hist.loc[ytd_start:] # type: ignore[misc] | |
if not ytd_data.empty: | |
price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0] | |
percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100 | |
else: | |
price_change = percent_change = np.nan | |
# Determine trend | |
if pd.notna(ma_50) and pd.notna(ma_200): | |
if ma_50 > ma_200: | |
trend = "Upward" | |
elif ma_50 < ma_200: | |
trend = "Downward" | |
else: | |
trend = "Neutral" | |
else: | |
trend = "Insufficient data for trend analysis" | |
# Calculate volatility (standard deviation of daily returns) | |
daily_returns = hist["Close"].pct_change().dropna() | |
volatility = daily_returns.std() * np.sqrt(252) # Annualized volatility | |
# Create result dictionary | |
result = { | |
"ticker": ticker, | |
"current_price": current_price, | |
"52_week_high": year_high, | |
"52_week_low": year_low, | |
"50_day_ma": ma_50, | |
"200_day_ma": ma_200, | |
"ytd_price_change": price_change, | |
"ytd_percent_change": percent_change, | |
"trend": trend, | |
"volatility": volatility, | |
} | |
# Convert numpy types to Python native types for better JSON serialization | |
for key, value in result.items(): | |
if isinstance(value, np.generic): | |
result[key] = value.item() | |
return result | |
final_answer = FinalAnswerTool() | |
print(analyze_stock('AMD')) | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |