bianxg's picture
Update app.py
c42852b verified
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def analyze_stock(ticker: str) -> dict: # type: ignore[type-arg]
"""
A tool that analyze stock data.
Args:
ticker: A string representing stock ticker(e.g., 'AMD')
"""
import os
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import yfinance as yf
from pytz import timezone # type: ignore
stock = yf.Ticker(ticker)
# Get historical data (1 year of data to ensure we have enough for 200-day MA)
end_date = datetime.now(timezone("UTC"))
start_date = end_date - timedelta(days=365)
hist = stock.history(start=start_date, end=end_date)
# Ensure we have data
if hist.empty:
return {"error": "No historical data available for the specified ticker."}
# Compute basic statistics and additional metrics
current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1])
year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max())
year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min())
# Calculate 50-day and 200-day moving averages
ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1]
ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1]
# Calculate YTD price change and percent change
ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC"))
ytd_data = hist.loc[ytd_start:] # type: ignore[misc]
if not ytd_data.empty:
price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0]
percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100
else:
price_change = percent_change = np.nan
# Determine trend
if pd.notna(ma_50) and pd.notna(ma_200):
if ma_50 > ma_200:
trend = "Upward"
elif ma_50 < ma_200:
trend = "Downward"
else:
trend = "Neutral"
else:
trend = "Insufficient data for trend analysis"
# Calculate volatility (standard deviation of daily returns)
daily_returns = hist["Close"].pct_change().dropna()
volatility = daily_returns.std() * np.sqrt(252) # Annualized volatility
# Create result dictionary
result = {
"ticker": ticker,
"current_price": current_price,
"52_week_high": year_high,
"52_week_low": year_low,
"50_day_ma": ma_50,
"200_day_ma": ma_200,
"ytd_price_change": price_change,
"ytd_percent_change": percent_change,
"trend": trend,
"volatility": volatility,
}
# Convert numpy types to Python native types for better JSON serialization
for key, value in result.items():
if isinstance(value, np.generic):
result[key] = value.item()
return result
final_answer = FinalAnswerTool()
print(analyze_stock('AMD'))
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()