Updates utlity functions
Browse files- src/utils.py +34 -7
src/utils.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import cv2
|
4 |
import matplotlib.image as mpimg
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
from PIL import Image, ImageOps
|
|
|
8 |
|
9 |
|
10 |
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
@@ -50,7 +52,7 @@ def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
|
50 |
return squared_img
|
51 |
|
52 |
|
53 |
-
def track_files(folder_path, extensions=(
|
54 |
"""
|
55 |
Track all the files in a folder and its subfolders.
|
56 |
|
@@ -83,7 +85,6 @@ def track_files(folder_path, extensions=('.jpg', '.jpeg', '.png')):
|
|
83 |
return file_list
|
84 |
|
85 |
|
86 |
-
|
87 |
def crop_circle_roi(image_path):
|
88 |
"""
|
89 |
Crop the circular Region of Interest (ROI) from a fundus image.
|
@@ -104,7 +105,9 @@ def crop_circle_roi(image_path):
|
|
104 |
_, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY)
|
105 |
|
106 |
# Find contours in the binary image
|
107 |
-
contours, _ = cv2.findContours(
|
|
|
|
|
108 |
|
109 |
# Assuming the largest contour corresponds to the ROI
|
110 |
contour = max(contours, key=cv2.contourArea)
|
@@ -113,10 +116,11 @@ def crop_circle_roi(image_path):
|
|
113 |
x, y, w, h = cv2.boundingRect(contour)
|
114 |
|
115 |
# Crop the circular ROI using the bounding rectangle
|
116 |
-
cropped_roi = image[y:y+h, x:x+w]
|
117 |
|
118 |
return cropped_roi
|
119 |
|
|
|
120 |
def plot_image_grid(image_paths, roi_crop=False):
|
121 |
"""
|
122 |
Create a grid plot with a maximum of 16 images.
|
@@ -138,9 +142,32 @@ def plot_image_grid(image_paths, roi_crop=False):
|
|
138 |
else:
|
139 |
img = mpimg.imread(image_paths[i])
|
140 |
ax.imshow(img)
|
141 |
-
ax.axis(
|
142 |
else:
|
143 |
-
ax.axis(
|
144 |
|
145 |
plt.tight_layout()
|
146 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from datetime import datetime
|
3 |
|
4 |
import cv2
|
5 |
import matplotlib.image as mpimg
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
8 |
from PIL import Image, ImageOps
|
9 |
+
from zoneinfo import ZoneInfo
|
10 |
|
11 |
|
12 |
def crop_and_pad_image(image_path, threshold=20, target_size=(512, 512)):
|
|
|
52 |
return squared_img
|
53 |
|
54 |
|
55 |
+
def track_files(folder_path, extensions=(".jpg", ".jpeg", ".png")):
|
56 |
"""
|
57 |
Track all the files in a folder and its subfolders.
|
58 |
|
|
|
85 |
return file_list
|
86 |
|
87 |
|
|
|
88 |
def crop_circle_roi(image_path):
|
89 |
"""
|
90 |
Crop the circular Region of Interest (ROI) from a fundus image.
|
|
|
105 |
_, thresholded_image = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY)
|
106 |
|
107 |
# Find contours in the binary image
|
108 |
+
contours, _ = cv2.findContours(
|
109 |
+
thresholded_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
110 |
+
)
|
111 |
|
112 |
# Assuming the largest contour corresponds to the ROI
|
113 |
contour = max(contours, key=cv2.contourArea)
|
|
|
116 |
x, y, w, h = cv2.boundingRect(contour)
|
117 |
|
118 |
# Crop the circular ROI using the bounding rectangle
|
119 |
+
cropped_roi = image[y : y + h, x : x + w]
|
120 |
|
121 |
return cropped_roi
|
122 |
|
123 |
+
|
124 |
def plot_image_grid(image_paths, roi_crop=False):
|
125 |
"""
|
126 |
Create a grid plot with a maximum of 16 images.
|
|
|
142 |
else:
|
143 |
img = mpimg.imread(image_paths[i])
|
144 |
ax.imshow(img)
|
145 |
+
ax.axis("off")
|
146 |
else:
|
147 |
+
ax.axis("off")
|
148 |
|
149 |
plt.tight_layout()
|
150 |
+
plt.show()
|
151 |
+
|
152 |
+
|
153 |
+
def generate_run_id(zone: ZoneInfo = ZoneInfo("Asia/Kathmandu")) -> str:
|
154 |
+
"""Generate a unique run ID using current UTC date and time.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
zone (ZoneInfo, optional): Timezone information. Defaults to Indian Standard Time.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
str: A unique run ID in the format 'run-YYYY-MM-DD-HH-MM-SS'.
|
161 |
+
"""
|
162 |
+
try:
|
163 |
+
current_utc_time = datetime.utcnow().astimezone(zone)
|
164 |
+
formatted_time = current_utc_time.strftime("%Y-%m-%d-%H-%M-%S")
|
165 |
+
return f"run-{formatted_time}"
|
166 |
+
except Exception as e:
|
167 |
+
# Handle exceptions gracefully
|
168 |
+
print(f"Error generating run ID: {e}")
|
169 |
+
return None # Or raise an exception if appropriate
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
print(generate_run_id())
|