Adds model factory with several model supports
Browse files- src/model.py +24 -41
- src/models/factory.py +141 -0
src/model.py
CHANGED
@@ -2,42 +2,26 @@ import lightning as L
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torchmetrics.functional import accuracy, cohen_kappa
|
5 |
-
from
|
6 |
|
7 |
|
8 |
class DRModel(L.LightningModule):
|
9 |
def __init__(
|
10 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
11 |
):
|
12 |
super().__init__()
|
13 |
self.save_hyperparameters()
|
14 |
self.num_classes = num_classes
|
15 |
self.learning_rate = learning_rate
|
|
|
16 |
|
17 |
# Define the model
|
18 |
-
|
19 |
-
# self.model = models.densenet169(weights=models.DenseNet169_Weights.DEFAULT)
|
20 |
-
# self.model = models.densenet161(weights=models.DenseNet161_Weights.DEFAULT)
|
21 |
-
self.model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT)
|
22 |
-
# self.model = models.vit_b_32(weights=models.ViT_B_32_Weights.DEFAULT)
|
23 |
-
|
24 |
-
# freeze the feature extractor
|
25 |
-
for param in self.model.parameters():
|
26 |
-
param.requires_grad = False
|
27 |
-
|
28 |
-
# self.model.head.weight.requires_grad = True
|
29 |
-
# self.model.head.bias.requires_grad = True
|
30 |
-
|
31 |
-
# Change the output layer to have the number of classes
|
32 |
-
# in_features = self.model.classifier.in_features
|
33 |
-
in_features = 768
|
34 |
-
self.model.heads = nn.Sequential(
|
35 |
-
# self.model.classifier = nn.Sequential(
|
36 |
-
nn.Linear(in_features, in_features // 2),
|
37 |
-
nn.ReLU(),
|
38 |
-
nn.Dropout(0.5),
|
39 |
-
nn.Linear(in_features // 2, num_classes),
|
40 |
-
)
|
41 |
|
42 |
# Define the loss function
|
43 |
self.criterion = nn.CrossEntropyLoss(weight=class_weights)
|
@@ -70,16 +54,20 @@ class DRModel(L.LightningModule):
|
|
70 |
self.log("val_kappa", kappa, on_step=True, on_epoch=True, prog_bar=True)
|
71 |
|
72 |
def configure_optimizers(self):
|
73 |
-
# optimizer = torch.optim.Adam(
|
74 |
-
# self.parameters(), lr=self.learning_rate, weight_decay=1e-4
|
75 |
-
# )
|
76 |
-
|
77 |
optimizer = torch.optim.AdamW(
|
78 |
self.parameters(), lr=self.learning_rate, weight_decay=0.05
|
79 |
)
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
optimizer,
|
84 |
mode="min", # or "max" if you're maximizing a metric
|
85 |
factor=0.1, # factor by which the learning rate will be reduced
|
@@ -87,12 +75,7 @@ class DRModel(L.LightningModule):
|
|
87 |
verbose=True, # print a message when learning rate is reduced
|
88 |
threshold=0.001, # threshold for measuring the new optimum, to only focus on significant changes
|
89 |
)
|
90 |
-
|
91 |
-
"
|
92 |
-
|
93 |
-
|
94 |
-
"interval": "epoch",
|
95 |
-
"monitor": "val_loss",
|
96 |
-
},
|
97 |
-
}
|
98 |
-
# return optimizer
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torchmetrics.functional import accuracy, cohen_kappa
|
5 |
+
from src.models.factory import ModelFactory
|
6 |
|
7 |
|
8 |
class DRModel(L.LightningModule):
|
9 |
def __init__(
|
10 |
+
self,
|
11 |
+
num_classes: int,
|
12 |
+
model_name: str = "densenet121",
|
13 |
+
learning_rate: float = 3e-4,
|
14 |
+
class_weights=None,
|
15 |
+
use_scheduler: bool = True,
|
16 |
):
|
17 |
super().__init__()
|
18 |
self.save_hyperparameters()
|
19 |
self.num_classes = num_classes
|
20 |
self.learning_rate = learning_rate
|
21 |
+
self.use_scheduler = use_scheduler
|
22 |
|
23 |
# Define the model
|
24 |
+
self.model = ModelFactory(name=model_name, num_classes=num_classes)()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Define the loss function
|
27 |
self.criterion = nn.CrossEntropyLoss(weight=class_weights)
|
|
|
54 |
self.log("val_kappa", kappa, on_step=True, on_epoch=True, prog_bar=True)
|
55 |
|
56 |
def configure_optimizers(self):
|
|
|
|
|
|
|
|
|
57 |
optimizer = torch.optim.AdamW(
|
58 |
self.parameters(), lr=self.learning_rate, weight_decay=0.05
|
59 |
)
|
60 |
+
|
61 |
+
configuration = {
|
62 |
+
"optimizer": optimizer,
|
63 |
+
"monitor": "val_loss", # monitor validation loss
|
64 |
+
}
|
65 |
+
|
66 |
+
if self.use_scheduler:
|
67 |
+
# Add lr scheduler
|
68 |
+
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
|
69 |
+
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20)
|
70 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
71 |
optimizer,
|
72 |
mode="min", # or "max" if you're maximizing a metric
|
73 |
factor=0.1, # factor by which the learning rate will be reduced
|
|
|
75 |
verbose=True, # print a message when learning rate is reduced
|
76 |
threshold=0.001, # threshold for measuring the new optimum, to only focus on significant changes
|
77 |
)
|
78 |
+
|
79 |
+
configuration["lr_scheduler"] = scheduler
|
80 |
+
|
81 |
+
return configuration
|
|
|
|
|
|
|
|
|
|
src/models/factory.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision import models
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
model_mapping = {
|
5 |
+
"densenet121": (
|
6 |
+
models.densenet121,
|
7 |
+
{"weights": models.DenseNet121_Weights.DEFAULT, "family": "densenet"},
|
8 |
+
),
|
9 |
+
"densenet161": (
|
10 |
+
models.densenet161,
|
11 |
+
{"weights": models.DenseNet161_Weights.DEFAULT, "family": "densenet"},
|
12 |
+
),
|
13 |
+
"densenet169": (
|
14 |
+
models.densenet169,
|
15 |
+
{"weights": models.DenseNet169_Weights.DEFAULT, "family": "densenet"},
|
16 |
+
),
|
17 |
+
"densenet201": (
|
18 |
+
models.densenet201,
|
19 |
+
{"weights": models.DenseNet201_Weights.DEFAULT, "family": "densenet"},
|
20 |
+
),
|
21 |
+
"resnet50": (
|
22 |
+
models.resnet50,
|
23 |
+
{"weights": models.ResNet50_Weights.IMAGENET1K_V2, "family": "resnet"},
|
24 |
+
),
|
25 |
+
"resnet101": (
|
26 |
+
models.resnet101,
|
27 |
+
{"weights": models.ResNet101_Weights.IMAGENET1K_V2, "family": "resnet"},
|
28 |
+
),
|
29 |
+
"resnet152": (
|
30 |
+
models.resnet152,
|
31 |
+
{"weights": models.ResNet152_Weights.IMAGENET1K_V2, "family": "resnet"},
|
32 |
+
),
|
33 |
+
"vit-b-16": (
|
34 |
+
models.vit_b_16,
|
35 |
+
{"weights": models.ViT_B_16_Weights.DEFAULT, "family": "vit"},
|
36 |
+
),
|
37 |
+
"vit-b-32": (
|
38 |
+
models.vit_b_32,
|
39 |
+
{"weights": models.ViT_B_32_Weights.DEFAULT, "family": "vit"},
|
40 |
+
),
|
41 |
+
# Add more models as needed with their respective configurations.
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
class Model(nn.Module):
|
46 |
+
"""Moodel definition."""
|
47 |
+
|
48 |
+
def __init__(self, model_name: str, num_classes: int):
|
49 |
+
"""
|
50 |
+
Initialize Model instance.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
model_name (str): Name of the model architecture.
|
54 |
+
num_classes (int): Number of output classes.
|
55 |
+
"""
|
56 |
+
super(Model, self).__init__()
|
57 |
+
|
58 |
+
model_class, model_config = model_mapping[model_name]
|
59 |
+
self.model = model_class(weights=model_config["weights"])
|
60 |
+
|
61 |
+
# Freeze model parameters
|
62 |
+
for param in self.model.parameters():
|
63 |
+
param.requires_grad = False
|
64 |
+
|
65 |
+
in_features = self._get_in_features(model_config["family"])
|
66 |
+
|
67 |
+
if model_config["family"] == "densenet":
|
68 |
+
self.model.classifier = self._create_classifier(in_features, num_classes)
|
69 |
+
elif model_config["family"] == "resnet":
|
70 |
+
self.model.fc = self._create_classifier(in_features, num_classes)
|
71 |
+
elif model_config["family"] == "vit":
|
72 |
+
self.model.heads = self._create_classifier(in_features, num_classes)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
"""Forward pass through the model."""
|
76 |
+
return self.model(x)
|
77 |
+
|
78 |
+
def _get_in_features(self, family: str) -> int:
|
79 |
+
"""Return the number of input features for the classifier."""
|
80 |
+
if family == "densenet":
|
81 |
+
return self.model.classifier.in_features
|
82 |
+
elif family == "resnet":
|
83 |
+
return self.model.fc.in_features
|
84 |
+
elif family == "vit":
|
85 |
+
return self.model.heads.head.in_features
|
86 |
+
|
87 |
+
def _create_classifier(self, in_features: int, num_classes: int) -> nn.Sequential:
|
88 |
+
"""Create the classifier module."""
|
89 |
+
return nn.Sequential(
|
90 |
+
nn.Linear(in_features, in_features // 2),
|
91 |
+
nn.ReLU(),
|
92 |
+
nn.Dropout(0.5),
|
93 |
+
nn.Linear(in_features // 2, num_classes),
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
class ModelFactory:
|
98 |
+
"""
|
99 |
+
Factory for creating different models based on their names.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
name (str): The name of the model factory.
|
103 |
+
num_classes (int): The number of output classes.
|
104 |
+
|
105 |
+
Raises:
|
106 |
+
ValueError: If the specified model factory is not implemented.
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(self, name: str, num_classes: int):
|
110 |
+
"""
|
111 |
+
Initialize ModelFactory instance.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
name (str): The name of the model.
|
115 |
+
num_classes (int): The number of output classes.
|
116 |
+
"""
|
117 |
+
self.name = name
|
118 |
+
self.num_classes = num_classes
|
119 |
+
|
120 |
+
def __call__(self):
|
121 |
+
"""
|
122 |
+
Create a model instance based on the provided name.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
model_name (str): Name of the model architecture.
|
126 |
+
num_classes (int): Number of output classes.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
Model: An instance of the selected model.
|
130 |
+
"""
|
131 |
+
if self.name not in model_mapping:
|
132 |
+
valid_options = ", ".join(model_mapping.keys())
|
133 |
+
raise ValueError(
|
134 |
+
f"Invalid model name: '{self.name}'. Available options: {valid_options}"
|
135 |
+
)
|
136 |
+
|
137 |
+
return Model(self.name, self.num_classes)
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
model = ModelFactory("resnet50", 5)()
|