Spaces:
Sleeping
Sleeping
import yfinance as yf | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from utilities.py.styling import streamlit_style | |
from utilities.py import plots | |
from utilities.py import summary_tables | |
from pypfopt import EfficientFrontier | |
from pypfopt import risk_models | |
from pypfopt import expected_returns | |
import plotly.express as px | |
import plotly.graph_objects as go | |
streamlit_style() | |
company_list_df = pd.read_csv("utilities/data/Company List.csv") | |
company_name = company_list_df["Name"].to_list() | |
company_symbol = (company_list_df["Ticker"] + ".NS").to_list() | |
name_to_symbol_dict = dict() | |
symbol_to_name_dict = dict() | |
for CSymbol, CName in zip(company_symbol, company_name): | |
name_to_symbol_dict[CName] = CSymbol | |
for CSymbol, CName in zip(company_symbol, company_name): | |
symbol_to_name_dict[CSymbol] = CName | |
streamlit_company_list_input = st.multiselect( | |
"Select Multiple Companies", company_name, default=None | |
) | |
optimization_methods = st.selectbox( | |
"Select an Optimsation Technique", | |
( | |
"Maximum Sharpe Ratio", | |
"Efficient Risk", | |
"Minimum Volatility", | |
"Efficient Return", | |
), | |
) | |
company_name_to_symbol = [name_to_symbol_dict[i] for i in streamlit_company_list_input] | |
number_of_symbols = len(company_name_to_symbol) | |
start_date = st.date_input( | |
"Start Date", | |
format="YYYY-MM-DD", | |
value=pd.Timestamp("1947-08-15"), | |
max_value=pd.Timestamp.now(), | |
) | |
initial_investment = st.number_input("How much would you want to invest?", value=45000) | |
if number_of_symbols > 1: | |
company_data = pd.DataFrame() | |
for cname in company_name_to_symbol: | |
stock_data_temp = yf.download( | |
cname, start=start_date, end=pd.Timestamp.now().strftime("%Y-%m-%d") | |
)["Adj Close"] | |
stock_data_temp.name = cname | |
company_data = pd.merge( | |
company_data, | |
stock_data_temp, | |
how="outer", | |
right_index=True, | |
left_index=True, | |
) | |
for i in company_data.columns: | |
company_data.dropna(axis=1, how="all", inplace=True) | |
company_data.dropna(inplace=True) | |
st.write( | |
f"Note: Due to unavailability of full data, this Analysis uses data from the date: {company_data.index[0]}" | |
) | |
number_of_symbols = len(company_data.columns) | |
st.dataframe(company_data, use_container_width=True) | |
if number_of_symbols > 1: | |
company_stock_returns_data = company_data.pct_change().dropna() | |
mu = expected_returns.mean_historical_return(company_data) | |
S = risk_models.sample_cov(company_data) | |
ef = EfficientFrontier(mu, S) | |
if optimization_methods == "Maximum Sharpe Raio": | |
ef.max_sharpe() | |
elif optimization_methods == "Minimum Volatility": | |
ef.min_volatility() | |
elif optimization_methods == "Efficient Risk": | |
ef.efficient_risk(0.5) | |
else: | |
ef.efficient_return(0.05) | |
company_asset_weights = pd.DataFrame.from_dict( | |
ef.clean_weights(), orient="index" | |
).reset_index() | |
company_asset_weights.columns = ["Ticker", "Allocation"] | |
company_asset_weights_copy = company_asset_weights | |
company_asset_weights["Name"] = [ | |
symbol_to_name_dict[i] for i in company_asset_weights["Ticker"] | |
] | |
company_asset_weights = company_asset_weights[["Name", "Ticker", "Allocation"]] | |
st.dataframe(company_asset_weights, use_container_width=True) | |
ef.portfolio_performance() | |
( | |
expected_annual_return, | |
annual_volatility, | |
sharpe_ratio, | |
) = ef.portfolio_performance() | |
st_portfolio_performance = pd.DataFrame.from_dict( | |
{ | |
"Expected annual return": (expected_annual_return * 100).round(2), | |
"Annual volatility": (annual_volatility * 100).round(2), | |
"Sharpe ratio": sharpe_ratio.round(2), | |
}, | |
orient="index", | |
).reset_index() | |
st_portfolio_performance.columns = ["Metrics", "Summary"] | |
st.write("Optimization Method - ", optimization_methods) | |
st.dataframe(st_portfolio_performance, use_container_width=True) | |
plots.pie_chart_company_asset_weights(company_asset_weights) | |
portfolio_returns = ( | |
company_stock_returns_data * list(ef.clean_weights().values()) | |
).sum(axis=1) | |
annual_portfolio_returns = portfolio_returns.resample("Y").apply( | |
lambda x: (x + 1).prod() - 1 | |
) | |
cumulative_returns = (portfolio_returns + 1).cumprod() * initial_investment | |
tab1, tab2 = st.tabs(["Plots", "Tables"]) | |
with tab1: | |
plots.plot_annual_returns(annual_portfolio_returns) | |
plots.plot_cummulative_returns(cumulative_returns) | |
with tab2: | |
summary_tables.annual_returns_dataframe(annual_portfolio_returns) | |
summary_tables.cumulative_returns_dataframe(cumulative_returns) | |