|
from diffusers_helper.hf_login import login |
|
|
|
import os |
|
import threading |
|
import time |
|
import requests |
|
from requests.adapters import HTTPAdapter |
|
from urllib3.util.retry import Retry |
|
import json |
|
|
|
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) |
|
|
|
import gradio as gr |
|
import torch |
|
import traceback |
|
import einops |
|
import safetensors.torch as sf |
|
import numpy as np |
|
import math |
|
|
|
|
|
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None |
|
|
|
|
|
GPU_AVAILABLE = False |
|
GPU_INITIALIZED = False |
|
last_update_time = time.time() |
|
|
|
|
|
if IN_HF_SPACE: |
|
try: |
|
import spaces |
|
print("Running inside a Hugging Face Space, 'spaces' module imported.") |
|
|
|
try: |
|
GPU_AVAILABLE = torch.cuda.is_available() |
|
print(f"GPU available: {GPU_AVAILABLE}") |
|
if GPU_AVAILABLE: |
|
print(f"GPU device name: {torch.cuda.get_device_name(0)}") |
|
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB") |
|
|
|
|
|
test_tensor = torch.zeros(1, device='cuda') + 1 |
|
del test_tensor |
|
print("GPU test operation succeeded.") |
|
else: |
|
print("Warning: CUDA says it's available, but no GPU device was detected.") |
|
except Exception as e: |
|
GPU_AVAILABLE = False |
|
print(f"Error checking GPU: {e}") |
|
print("Falling back to CPU mode.") |
|
except ImportError: |
|
print("Could not import 'spaces' module. Possibly not in a HF Space.") |
|
GPU_AVAILABLE = torch.cuda.is_available() |
|
|
|
from PIL import Image |
|
from diffusers import AutoencoderKLHunyuanVideo |
|
from transformers import ( |
|
LlamaModel, |
|
CLIPTextModel, |
|
LlamaTokenizerFast, |
|
CLIPTokenizer, |
|
SiglipImageProcessor, |
|
SiglipVisionModel |
|
) |
|
from diffusers_helper.hunyuan import ( |
|
encode_prompt_conds, |
|
vae_decode, |
|
vae_encode, |
|
vae_decode_fake |
|
) |
|
from diffusers_helper.utils import ( |
|
save_bcthw_as_mp4, |
|
crop_or_pad_yield_mask, |
|
soft_append_bcthw, |
|
resize_and_center_crop, |
|
generate_timestamp |
|
) |
|
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked |
|
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan |
|
from diffusers_helper.memory import ( |
|
cpu, |
|
gpu, |
|
get_cuda_free_memory_gb, |
|
move_model_to_device_with_memory_preservation, |
|
offload_model_from_device_for_memory_preservation, |
|
fake_diffusers_current_device, |
|
DynamicSwapInstaller, |
|
unload_complete_models, |
|
load_model_as_complete |
|
) |
|
from diffusers_helper.thread_utils import AsyncStream, async_run |
|
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html |
|
from diffusers_helper.clip_vision import hf_clip_vision_encode |
|
|
|
outputs_folder = './outputs/' |
|
os.makedirs(outputs_folder, exist_ok=True) |
|
|
|
|
|
if not IN_HF_SPACE: |
|
try: |
|
if torch.cuda.is_available(): |
|
free_mem_gb = get_cuda_free_memory_gb(gpu) |
|
print(f'Free VRAM: {free_mem_gb} GB') |
|
else: |
|
free_mem_gb = 6.0 |
|
print("CUDA not available, using default memory setting.") |
|
except Exception as e: |
|
free_mem_gb = 6.0 |
|
print(f"Error getting CUDA memory: {e}, using default=6GB") |
|
high_vram = free_mem_gb > 60 |
|
print(f'High-VRAM mode: {high_vram}') |
|
else: |
|
print("Using default memory settings in a HF Space.") |
|
try: |
|
if GPU_AVAILABLE: |
|
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 |
|
high_vram = free_mem_gb > 10 |
|
else: |
|
free_mem_gb = 6.0 |
|
high_vram = False |
|
except Exception as e: |
|
print(f"Error retrieving GPU memory: {e}") |
|
free_mem_gb = 6.0 |
|
high_vram = False |
|
print(f'GPU mem: {free_mem_gb:.2f} GB, high_vram={high_vram}') |
|
|
|
models = {} |
|
cpu_fallback_mode = not GPU_AVAILABLE |
|
|
|
|
|
def load_models(): |
|
""" |
|
Load the entire pipeline models (VAE, text encoders, image encoder, transformer). |
|
""" |
|
global models, cpu_fallback_mode, GPU_INITIALIZED |
|
|
|
if GPU_INITIALIZED: |
|
print("Models are already loaded. Skipping duplicate loading.") |
|
return models |
|
|
|
print("Starting model load...") |
|
|
|
try: |
|
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' |
|
model_device = 'cpu' |
|
|
|
dtype = torch.float16 if GPU_AVAILABLE else torch.float32 |
|
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32 |
|
|
|
print(f"Device: {device}, VAE/encoders dtype={dtype}, transformer dtype={transformer_dtype}") |
|
|
|
try: |
|
text_encoder = LlamaModel.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='text_encoder', |
|
torch_dtype=dtype |
|
).to(model_device) |
|
text_encoder_2 = CLIPTextModel.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='text_encoder_2', |
|
torch_dtype=dtype |
|
).to(model_device) |
|
tokenizer = LlamaTokenizerFast.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='tokenizer' |
|
) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='tokenizer_2' |
|
) |
|
vae = AutoencoderKLHunyuanVideo.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='vae', |
|
torch_dtype=dtype |
|
).to(model_device) |
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained( |
|
"lllyasviel/flux_redux_bfl", |
|
subfolder='feature_extractor' |
|
) |
|
image_encoder = SiglipVisionModel.from_pretrained( |
|
"lllyasviel/flux_redux_bfl", |
|
subfolder='image_encoder', |
|
torch_dtype=dtype |
|
).to(model_device) |
|
|
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( |
|
"tori29umai/FramePackI2V_HY_rotate_landscape", |
|
torch_dtype=transformer_dtype |
|
).to(model_device) |
|
|
|
print("All models loaded successfully.") |
|
except Exception as e: |
|
print(f"Error loading models: {e}") |
|
print("Retry with float32 on CPU.") |
|
dtype = torch.float32 |
|
transformer_dtype = torch.float32 |
|
cpu_fallback_mode = True |
|
|
|
text_encoder = LlamaModel.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='text_encoder', |
|
torch_dtype=dtype |
|
).to('cpu') |
|
text_encoder_2 = CLIPTextModel.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='text_encoder_2', |
|
torch_dtype=dtype |
|
).to('cpu') |
|
tokenizer = LlamaTokenizerFast.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='tokenizer' |
|
) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='tokenizer_2' |
|
) |
|
vae = AutoencoderKLHunyuanVideo.from_pretrained( |
|
"hunyuanvideo-community/HunyuanVideo", |
|
subfolder='vae', |
|
torch_dtype=dtype |
|
).to('cpu') |
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained( |
|
"lllyasviel/flux_redux_bfl", |
|
subfolder='feature_extractor' |
|
) |
|
image_encoder = SiglipVisionModel.from_pretrained( |
|
"lllyasviel/flux_redux_bfl", |
|
subfolder='image_encoder', |
|
torch_dtype=dtype |
|
).to('cpu') |
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( |
|
"tori29umai/FramePackI2V_HY_rotate_landscape", |
|
torch_dtype=transformer_dtype |
|
).to('cpu') |
|
|
|
print("Models loaded in CPU-only fallback mode.") |
|
|
|
vae.eval() |
|
text_encoder.eval() |
|
text_encoder_2.eval() |
|
image_encoder.eval() |
|
transformer.eval() |
|
|
|
if not high_vram or cpu_fallback_mode: |
|
vae.enable_slicing() |
|
vae.enable_tiling() |
|
|
|
transformer.high_quality_fp32_output_for_inference = True |
|
print("transformer.high_quality_fp32_output_for_inference = True") |
|
|
|
if not cpu_fallback_mode: |
|
transformer.to(dtype=transformer_dtype) |
|
vae.to(dtype=dtype) |
|
image_encoder.to(dtype=dtype) |
|
text_encoder.to(dtype=dtype) |
|
text_encoder_2.to(dtype=dtype) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
text_encoder_2.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
transformer.requires_grad_(False) |
|
|
|
if torch.cuda.is_available() and not cpu_fallback_mode: |
|
try: |
|
if not high_vram: |
|
DynamicSwapInstaller.install_model(transformer, device=device) |
|
DynamicSwapInstaller.install_model(text_encoder, device=device) |
|
else: |
|
text_encoder.to(device) |
|
text_encoder_2.to(device) |
|
image_encoder.to(device) |
|
vae.to(device) |
|
transformer.to(device) |
|
print(f"Successfully moved models to {device}") |
|
except Exception as e: |
|
print(f"Error moving models to {device}: {e}") |
|
print("Falling back to CPU.") |
|
cpu_fallback_mode = True |
|
|
|
models_local = { |
|
'text_encoder': text_encoder, |
|
'text_encoder_2': text_encoder_2, |
|
'tokenizer': tokenizer, |
|
'tokenizer_2': tokenizer_2, |
|
'vae': vae, |
|
'feature_extractor': feature_extractor, |
|
'image_encoder': image_encoder, |
|
'transformer': transformer |
|
} |
|
|
|
GPU_INITIALIZED = True |
|
models.update(models_local) |
|
print(f"Model load complete. Mode: {'CPU' if cpu_fallback_mode else 'GPU'}") |
|
return models |
|
except Exception as e: |
|
print(f"Unexpected error in load_models(): {e}") |
|
traceback.print_exc() |
|
cpu_fallback_mode = True |
|
return {} |
|
|
|
|
|
|
|
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE: |
|
try: |
|
@spaces.GPU |
|
def initialize_models(): |
|
global GPU_INITIALIZED |
|
try: |
|
result = load_models() |
|
GPU_INITIALIZED = True |
|
return result |
|
except Exception as e: |
|
print(f"Error in @spaces.GPU model init: {e}") |
|
global cpu_fallback_mode |
|
cpu_fallback_mode = True |
|
return load_models() |
|
except Exception as e: |
|
print(f"Error creating spaces.GPU decorator: {e}") |
|
def initialize_models(): |
|
return load_models() |
|
else: |
|
def initialize_models(): |
|
return load_models() |
|
|
|
|
|
def get_models(): |
|
""" |
|
Retrieve the global models or load them if not yet loaded. |
|
""" |
|
global models |
|
model_loading_key = "__model_loading__" |
|
|
|
if not models: |
|
if model_loading_key in globals(): |
|
print("Models are loading. Please wait.") |
|
import time |
|
start_time = time.time() |
|
while (not models) and (model_loading_key in globals()): |
|
time.sleep(0.5) |
|
if time.time() - start_time > 60: |
|
print("Timed out waiting for model load.") |
|
break |
|
if models: |
|
return models |
|
try: |
|
globals()[model_loading_key] = True |
|
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode: |
|
try: |
|
print("Loading models via @spaces.GPU") |
|
models_local = initialize_models() |
|
models.update(models_local) |
|
except Exception as e: |
|
print(f"GPU decorator load error: {e}, fallback to direct load.") |
|
models_local = load_models() |
|
models.update(models_local) |
|
else: |
|
models_local = load_models() |
|
models.update(models_local) |
|
except Exception as e: |
|
print(f"Unexpected error while loading models: {e}") |
|
models.clear() |
|
finally: |
|
if model_loading_key in globals(): |
|
del globals()[model_loading_key] |
|
return models |
|
|
|
|
|
|
|
PREDEFINED_RESOLUTIONS = [ |
|
(416, 960), (448, 864), (480, 832), (512, 768), (544, 704), |
|
(576, 672), (608, 640), (640, 608), (672, 576), (704, 544), |
|
(768, 512), (832, 480), (864, 448), (960, 416) |
|
] |
|
|
|
def find_closest_aspect_ratio(width, height, target_resolutions): |
|
""" |
|
Find the resolution in 'target_resolutions' whose aspect ratio |
|
is closest to the original image aspect ratio (width/height). |
|
""" |
|
original_aspect = width / height |
|
min_diff = float('inf') |
|
closest_resolution = None |
|
|
|
for tw, th in target_resolutions: |
|
target_aspect = tw / th |
|
diff = abs(original_aspect - target_aspect) |
|
if diff < min_diff: |
|
min_diff = diff |
|
closest_resolution = (tw, th) |
|
return closest_resolution |
|
|
|
|
|
stream = AsyncStream() |
|
|
|
@torch.no_grad() |
|
def worker( |
|
input_image, |
|
prompt, |
|
n_prompt, |
|
seed, |
|
total_second_length, |
|
latent_window_size, |
|
steps, |
|
cfg, |
|
gs, |
|
rs, |
|
gpu_memory_preservation, |
|
use_teacache |
|
): |
|
""" |
|
Background worker that performs the actual generation. |
|
""" |
|
global last_update_time |
|
last_update_time = time.time() |
|
|
|
|
|
total_second_length = min(total_second_length, 3.0) |
|
|
|
try: |
|
models_local = get_models() |
|
if not models_local: |
|
err_msg = "Failed to load models. Check logs for details." |
|
print(err_msg) |
|
stream.output_queue.push(('error', err_msg)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
text_encoder = models_local['text_encoder'] |
|
text_encoder_2 = models_local['text_encoder_2'] |
|
tokenizer = models_local['tokenizer'] |
|
tokenizer_2 = models_local['tokenizer_2'] |
|
vae = models_local['vae'] |
|
feature_extractor = models_local['feature_extractor'] |
|
image_encoder = models_local['image_encoder'] |
|
transformer = models_local['transformer'] |
|
except Exception as e: |
|
err = f"Error retrieving models: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu' |
|
print(f"Inference device: {device}") |
|
|
|
|
|
if cpu_fallback_mode: |
|
print("CPU fallback mode: using smaller parameters for performance.") |
|
latent_window_size = min(latent_window_size, 5) |
|
steps = min(steps, 15) |
|
total_second_length = min(total_second_length, 2.0) |
|
|
|
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) |
|
total_latent_sections = int(max(round(total_latent_sections), 1)) |
|
|
|
job_id = generate_timestamp() |
|
last_output_filename = None |
|
history_pixels = None |
|
history_latents = None |
|
total_generated_latent_frames = 0 |
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) |
|
|
|
try: |
|
if not high_vram and not cpu_fallback_mode: |
|
try: |
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
except Exception as e: |
|
print(f"Error unloading models: {e}") |
|
|
|
|
|
last_update_time = time.time() |
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Encoding text ...')))) |
|
|
|
try: |
|
if not high_vram and not cpu_fallback_mode: |
|
fake_diffusers_current_device(text_encoder, device) |
|
load_model_as_complete(text_encoder_2, target_device=device) |
|
|
|
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
if cfg == 1: |
|
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) |
|
else: |
|
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
|
|
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) |
|
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) |
|
except Exception as e: |
|
err = f"Text encoding error: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
try: |
|
H, W, C = input_image.shape |
|
target_w, target_h = find_closest_aspect_ratio(W, H, PREDEFINED_RESOLUTIONS) |
|
|
|
|
|
if cpu_fallback_mode: |
|
scale_factor = min(320 / target_h, 320 / target_w) |
|
target_h = int(target_h * scale_factor) |
|
target_w = int(target_w * scale_factor) |
|
|
|
print(f"Original image: {W}x{H}, resizing to: {target_w}x{target_h}") |
|
input_image_np = resize_and_center_crop(input_image, target_width=target_w, target_height=target_h) |
|
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) |
|
|
|
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 |
|
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] |
|
except Exception as e: |
|
err = f"Image processing error: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
last_update_time = time.time() |
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) |
|
|
|
try: |
|
if not high_vram and not cpu_fallback_mode: |
|
load_model_as_complete(vae, target_device=device) |
|
start_latent = vae_encode(input_image_pt, vae) |
|
except Exception as e: |
|
err = f"VAE encode error: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
last_update_time = time.time() |
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) |
|
|
|
try: |
|
if not high_vram and not cpu_fallback_mode: |
|
load_model_as_complete(image_encoder, target_device=device) |
|
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) |
|
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state |
|
except Exception as e: |
|
err = f"CLIP Vision encode error: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
try: |
|
llama_vec = llama_vec.to(transformer.dtype) |
|
llama_vec_n = llama_vec_n.to(transformer.dtype) |
|
clip_l_pooler = clip_l_pooler.to(transformer.dtype) |
|
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) |
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) |
|
except Exception as e: |
|
err = f"Data type conversion error: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
last_update_time = time.time() |
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting sampling...')))) |
|
|
|
rnd = torch.Generator("cpu").manual_seed(seed) |
|
num_frames = latent_window_size * 4 - 3 |
|
|
|
try: |
|
history_latents = torch.zeros( |
|
size=(1, 16, 1 + 2 + 16, target_h // 8, target_w // 8), |
|
dtype=torch.float32 |
|
).cpu() |
|
history_pixels = None |
|
total_generated_latent_frames = 0 |
|
except Exception as e: |
|
err = f"Error initializing history latents: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
latent_paddings = list(reversed(range(total_latent_sections))) |
|
if total_latent_sections > 4: |
|
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0] |
|
|
|
for latent_padding in latent_paddings: |
|
last_update_time = time.time() |
|
is_last_section = (latent_padding == 0) |
|
latent_padding_size = latent_padding * latent_window_size |
|
|
|
if stream.input_queue.top() == 'end': |
|
if history_pixels is not None and total_generated_latent_frames > 0: |
|
try: |
|
final_name = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') |
|
save_bcthw_as_mp4(history_pixels, final_name, fps=30, crf=18) |
|
stream.output_queue.push(('file', final_name)) |
|
except Exception as e: |
|
print(f"Error saving final partial video: {e}") |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
print(f'latent_padding_size = {latent_padding_size}, is_last_section={is_last_section}') |
|
|
|
try: |
|
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) |
|
( |
|
cidx_pre, |
|
blank_indices, |
|
latent_indices, |
|
cidx_post, |
|
cidx_2x, |
|
cidx_4x |
|
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) |
|
clean_latent_indices = torch.cat([cidx_pre, cidx_post], dim=1) |
|
|
|
clean_latents_pre = start_latent.to(history_latents) |
|
c_latents_post, c_latents_2x, c_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2) |
|
clean_latents = torch.cat([clean_latents_pre, c_latents_post], dim=2) |
|
except Exception as e: |
|
err = f"Error preparing sampling data: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
continue |
|
|
|
if not high_vram and not cpu_fallback_mode: |
|
try: |
|
unload_complete_models() |
|
move_model_to_device_with_memory_preservation( |
|
transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation |
|
) |
|
except Exception as e: |
|
print(f"Error moving transformer to GPU: {e}") |
|
|
|
if use_teacache and not cpu_fallback_mode: |
|
try: |
|
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) |
|
except Exception as e: |
|
print(f"Error initializing TeaCache: {e}") |
|
transformer.initialize_teacache(enable_teacache=False) |
|
else: |
|
transformer.initialize_teacache(enable_teacache=False) |
|
|
|
def callback(d): |
|
global last_update_time |
|
last_update_time = time.time() |
|
try: |
|
if stream.input_queue.top() == 'end': |
|
stream.output_queue.push(('end', None)) |
|
raise KeyboardInterrupt('User requested stop.') |
|
preview_latents = d['denoised'] |
|
preview_latents = vae_decode_fake(preview_latents) |
|
preview_img = (preview_latents * 255.0).cpu().numpy().clip(0,255).astype(np.uint8) |
|
preview_img = einops.rearrange(preview_img, 'b c t h w -> (b h) (t w) c') |
|
|
|
curr_step = d['i'] + 1 |
|
percentage = int(100.0 * curr_step / steps) |
|
hint = f'Sampling {curr_step}/{steps}' |
|
desc = f'Generated frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}' |
|
bar_html = make_progress_bar_html(percentage, hint) |
|
stream.output_queue.push(('progress', (preview_img, desc, bar_html))) |
|
except KeyboardInterrupt: |
|
raise |
|
except Exception as exc: |
|
print(f"Error in sampling callback: {exc}") |
|
return |
|
|
|
try: |
|
print(f"Sampling: device={device}, dtype={transformer.dtype}, teacache={use_teacache}") |
|
try: |
|
generated_latents = sample_hunyuan( |
|
transformer=transformer, |
|
sampler='unipc', |
|
width=target_w, |
|
height=target_h, |
|
frames=num_frames, |
|
real_guidance_scale=cfg, |
|
distilled_guidance_scale=gs, |
|
guidance_rescale=rs, |
|
num_inference_steps=steps, |
|
generator=rnd, |
|
prompt_embeds=llama_vec, |
|
prompt_embeds_mask=llama_attention_mask, |
|
prompt_poolers=clip_l_pooler, |
|
negative_prompt_embeds=llama_vec_n, |
|
negative_prompt_embeds_mask=llama_attention_mask_n, |
|
negative_prompt_poolers=clip_l_pooler_n, |
|
device=device, |
|
dtype=transformer.dtype, |
|
image_embeddings=image_encoder_last_hidden_state, |
|
latent_indices=latent_indices, |
|
clean_latents=clean_latents, |
|
clean_latent_indices=clean_latent_indices, |
|
clean_latents_2x=c_latents_2x, |
|
clean_latent_2x_indices=cidx_2x, |
|
clean_latents_4x=c_latents_4x, |
|
clean_latent_4x_indices=cidx_4x, |
|
callback=callback |
|
) |
|
except KeyboardInterrupt as e: |
|
print(f"User interrupt: {e}") |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
err_msg = "User stopped generation; partial video returned." |
|
else: |
|
err_msg = "User stopped generation; no video produced." |
|
stream.output_queue.push(('error', err_msg)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
except Exception as e: |
|
print(f"Error during sampling: {e}") |
|
traceback.print_exc() |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
err_msg = f"Sampling error; partial video returned: {e}" |
|
stream.output_queue.push(('error', err_msg)) |
|
else: |
|
err_msg = f"Sampling error; no video produced: {e}" |
|
stream.output_queue.push(('error', err_msg)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
try: |
|
if is_last_section: |
|
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) |
|
total_generated_latent_frames += int(generated_latents.shape[2]) |
|
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) |
|
except Exception as e: |
|
err = f"Error merging latent outputs: {e}" |
|
print(err) |
|
traceback.print_exc() |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
stream.output_queue.push(('error', err)) |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
if not high_vram and not cpu_fallback_mode: |
|
try: |
|
offload_model_from_device_for_memory_preservation( |
|
transformer, target_device=device, preserved_memory_gb=8 |
|
) |
|
load_model_as_complete(vae, target_device=device) |
|
except Exception as e: |
|
print(f"Error managing model memory: {e}") |
|
|
|
try: |
|
real_history_latents = history_latents[:, :, :total_generated_latent_frames] |
|
except Exception as e: |
|
err = f"Error slicing latents history: {e}" |
|
print(err) |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
continue |
|
|
|
try: |
|
if history_pixels is None: |
|
history_pixels = vae_decode(real_history_latents, vae).cpu() |
|
else: |
|
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) |
|
overlapped_frames = latent_window_size * 4 - 3 |
|
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() |
|
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) |
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') |
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=18) |
|
last_output_filename = output_filename |
|
stream.output_queue.push(('file', output_filename)) |
|
except Exception as e: |
|
print(f"Error decoding/saving video: {e}") |
|
traceback.print_exc() |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
err = f"Error decoding/saving video: {e}" |
|
stream.output_queue.push(('error', err)) |
|
continue |
|
|
|
if is_last_section: |
|
break |
|
except Exception as e: |
|
print(f"Outer error: {e}, type={type(e)}") |
|
traceback.print_exc() |
|
if not high_vram and not cpu_fallback_mode: |
|
try: |
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
except Exception as ue: |
|
print(f"Unload error: {ue}") |
|
if last_output_filename: |
|
stream.output_queue.push(('file', last_output_filename)) |
|
err = f"Error in worker: {e}" |
|
stream.output_queue.push(('error', err)) |
|
|
|
print("Worker finished, pushing end.") |
|
stream.output_queue.push(('end', None)) |
|
|
|
|
|
|
|
if IN_HF_SPACE and 'spaces' in globals(): |
|
@spaces.GPU |
|
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): |
|
global stream |
|
assert input_image is not None, "No input image provided." |
|
|
|
|
|
latent_window_size = 9 |
|
steps = 25 |
|
cfg = 1.0 |
|
gs = 10.0 |
|
rs = 0.0 |
|
gpu_memory_preservation = 6 |
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) |
|
try: |
|
stream = AsyncStream() |
|
async_run( |
|
worker, |
|
input_image, prompt, n_prompt, seed, |
|
total_second_length, latent_window_size, steps, |
|
cfg, gs, rs, gpu_memory_preservation, use_teacache |
|
) |
|
|
|
output_filename = None |
|
prev_output_filename = None |
|
error_message = None |
|
|
|
while True: |
|
try: |
|
flag, data = stream.output_queue.next() |
|
if flag == 'file': |
|
output_filename = data |
|
prev_output_filename = output_filename |
|
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) |
|
elif flag == 'progress': |
|
preview, desc, html = data |
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) |
|
elif flag == 'error': |
|
error_message = data |
|
print(f"Received error: {error_message}") |
|
elif flag == 'end': |
|
if output_filename is None and prev_output_filename is not None: |
|
output_filename = prev_output_filename |
|
if error_message: |
|
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
else: |
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
except Exception as e: |
|
print(f"Error processing output: {e}") |
|
if (time.time() - last_update_time) > 60: |
|
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") |
|
if prev_output_filename: |
|
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
else: |
|
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
except Exception as e: |
|
print(f"Error starting process: {e}") |
|
traceback.print_exc() |
|
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
|
|
process = process_with_gpu |
|
else: |
|
def process(input_image, prompt, n_prompt, seed, total_second_length, use_teacache): |
|
global stream |
|
assert input_image is not None, "No input image provided." |
|
|
|
latent_window_size = 9 |
|
steps = 25 |
|
cfg = 1.0 |
|
gs = 10.0 |
|
rs = 0.0 |
|
gpu_memory_preservation = 6 |
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) |
|
try: |
|
stream = AsyncStream() |
|
async_run( |
|
worker, |
|
input_image, prompt, n_prompt, seed, |
|
total_second_length, latent_window_size, steps, |
|
cfg, gs, rs, gpu_memory_preservation, use_teacache |
|
) |
|
|
|
output_filename = None |
|
prev_output_filename = None |
|
error_message = None |
|
|
|
while True: |
|
try: |
|
flag, data = stream.output_queue.next() |
|
if flag == 'file': |
|
output_filename = data |
|
prev_output_filename = output_filename |
|
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) |
|
elif flag == 'progress': |
|
preview, desc, html = data |
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) |
|
elif flag == 'error': |
|
error_message = data |
|
print(f"Received error: {error_message}") |
|
elif flag == 'end': |
|
if output_filename is None and prev_output_filename is not None: |
|
output_filename = prev_output_filename |
|
if error_message: |
|
yield output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
else: |
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
except Exception as e: |
|
print(f"Error processing output: {e}") |
|
if (time.time() - last_update_time) > 60: |
|
print(f"No updates for {(time.time()-last_update_time):.1f}s, likely hung.") |
|
if prev_output_filename: |
|
yield prev_output_filename, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
else: |
|
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
except Exception as e: |
|
print(f"Error starting process: {e}") |
|
traceback.print_exc() |
|
yield None, gr.update(visible=False), gr.update(), gr.update(interactive=True), gr.update(interactive=False) |
|
|
|
|
|
def end_process(): |
|
""" |
|
Stop generation by pushing 'end' signal into the queue. |
|
""" |
|
print("User clicked the stop button, sending 'end' signal...") |
|
global stream |
|
if 'stream' in globals() and stream is not None: |
|
try: |
|
current_top = stream.input_queue.top() |
|
print(f"Queue top signal: {current_top}") |
|
except Exception as e: |
|
print(f"Error checking queue status: {e}") |
|
try: |
|
stream.input_queue.push('end') |
|
print("Successfully pushed 'end' signal.") |
|
except Exception as e: |
|
print(f"Error pushing 'end' signal: {e}") |
|
else: |
|
print("Warning: 'stream' is not initialized; cannot stop.") |
|
return None |
|
|
|
|
|
quick_prompts = [ |
|
["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"] |
|
] |
|
|
|
def make_custom_css(): |
|
base_progress_css = make_progress_bar_css() |
|
enhanced_css = """ |
|
body { |
|
background: #f9fafb !important; |
|
font-family: "Noto Sans", sans-serif; |
|
} |
|
#app-container { |
|
max-width: 1200px; |
|
margin: 0 auto; |
|
padding: 1rem; |
|
position: relative; |
|
} |
|
h1 { |
|
font-size: 2rem; |
|
text-align: center; |
|
margin-bottom: 1rem; |
|
color: #2d3748; |
|
font-weight: 700; |
|
} |
|
.start-btn, .stop-btn { |
|
min-height: 45px; |
|
font-size: 1rem; |
|
font-weight: 600; |
|
} |
|
.start-btn { |
|
background-color: #3182ce !important; |
|
color: #fff !important; |
|
} |
|
.stop-btn { |
|
background-color: #e53e3e !important; |
|
color: #fff !important; |
|
} |
|
.button-container button:hover { |
|
filter: brightness(0.95); |
|
} |
|
.preview-container, .video-container { |
|
border: 1px solid #cbd5e0; |
|
border-radius: 8px; |
|
overflow: hidden; |
|
} |
|
.progress-container { |
|
margin-top: 15px; |
|
margin-bottom: 15px; |
|
} |
|
.error-message { |
|
background-color: #fff5f5; |
|
border: 1px solid #fed7d7; |
|
color: #e53e3e; |
|
padding: 10px; |
|
border-radius: 4px; |
|
margin-top: 10px; |
|
} |
|
.error-icon { |
|
color: #e53e3e; |
|
margin-right: 8px; |
|
} |
|
#error-message { |
|
color: #ff4444; |
|
font-weight: bold; |
|
padding: 10px; |
|
border-radius: 4px; |
|
margin-top: 10px; |
|
} |
|
@media (max-width: 768px) { |
|
#app-container { |
|
padding: 0.5rem; |
|
} |
|
.mobile-full-width { |
|
flex-direction: column !important; |
|
} |
|
.mobile-full-width > .gr-block { |
|
width: 100% !important; |
|
} |
|
} |
|
""" |
|
return base_progress_css + enhanced_css |
|
|
|
css = make_custom_css() |
|
|
|
block = gr.Blocks(css=css).queue() |
|
with block: |
|
gr.HTML("<h1>FramePack Rotate-Landscape - Generate Rotating Landscape Video</h1>") |
|
|
|
with gr.Row(elem_classes="mobile-full-width"): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image( |
|
sources='upload', |
|
type="numpy", |
|
label="Upload Image", |
|
height=320 |
|
) |
|
|
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
value='The camera smoothly orbits around the center of the scene...', |
|
) |
|
|
|
example_quick_prompts = gr.Dataset( |
|
samples=quick_prompts, |
|
label="Quick Prompts", |
|
samples_per_page=1000, |
|
components=[prompt] |
|
) |
|
example_quick_prompts.click( |
|
lambda x: x[0], |
|
inputs=[example_quick_prompts], |
|
outputs=prompt, |
|
show_progress=False, |
|
queue=False |
|
) |
|
|
|
with gr.Row(elem_classes="button-container"): |
|
start_button = gr.Button( |
|
value="Generate", |
|
elem_classes="start-btn", |
|
variant="primary" |
|
) |
|
end_button = gr.Button( |
|
value="Stop", |
|
elem_classes="stop-btn", |
|
interactive=False |
|
) |
|
|
|
use_teacache = gr.Checkbox( |
|
label="Use TeaCache", |
|
value=True, |
|
info="Faster speed, but possibly worse finger/hand generation." |
|
) |
|
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) |
|
seed = gr.Number(label="Seed", value=31337, precision=0) |
|
total_second_length = gr.Slider( |
|
label="Video length (max 3 seconds)", |
|
minimum=0.5, maximum=3, value=1.0, step=0.1 |
|
) |
|
|
|
with gr.Column(scale=1): |
|
preview_image = gr.Image( |
|
label="Preview", |
|
height=200, |
|
visible=False, |
|
elem_classes="preview-container" |
|
) |
|
result_video = gr.Video( |
|
label="Generated Video", |
|
autoplay=True, |
|
loop=True, |
|
show_share_button=True, |
|
height=512, |
|
elem_classes="video-container" |
|
) |
|
gr.HTML(""" |
|
<div> |
|
Note: Due to reversed sampling, ending actions may appear before starting actions. If the start action is missing, please wait for further frames. |
|
</div> |
|
""") |
|
|
|
with gr.Group(elem_classes="progress-container"): |
|
progress_desc = gr.Markdown('') |
|
progress_bar = gr.HTML('') |
|
|
|
error_message = gr.HTML('', elem_id='error-message', visible=True) |
|
|
|
|
|
ips = [input_image, prompt, n_prompt, seed, total_second_length, use_teacache] |
|
start_button.click( |
|
fn=process, |
|
inputs=ips, |
|
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button] |
|
) |
|
end_button.click(fn=end_process) |
|
|
|
block.launch() |
|
|