benjaminBeuster's picture
Upload app.py with huggingface_hub
c5d9900 verified
"""
HuggingFace Space - ESS Variable Classification Demo
Interactive Gradio interface for the XLM-RoBERTa ESS classifier.
Developed by Sikt - Norwegian Agency for Shared Services in Education and Research
"""
import gradio as gr
from transformers import pipeline
# Load the model
MODEL_NAME = "benjaminBeuster/xlm-roberta-base-ess-classification"
classifier = pipeline("text-classification", model=MODEL_NAME)
# Sikt brand colors
SIKT_COLORS = {
"amaranth": "#ee3243", # Primary accent
"meteorite": "#331c6c", # Dark
"selago": "#f3f1fe" # Light
}
# Category descriptions
CATEGORY_INFO = {
"DEMOGRAPHY (POPULATION, VITAL STATISTICS, AND CENSUSES)": "Demographics, population statistics, age, gender",
"ECONOMICS": "Economic issues, finance, income, wealth",
"EDUCATION": "Education, schooling, qualifications",
"HEALTH": "Healthcare, medical services, health satisfaction",
"POLITICS": "Political systems, trust in government, parliament",
"SOCIETY AND CULTURE": "Social issues, cultural topics, religion",
"LABOUR AND EMPLOYMENT": "Work, occupation, employment status",
"PSYCHOLOGY": "Mental health, psychological wellbeing",
"HOUSING AND LAND USE": "Housing conditions, residential environment",
"NATURAL ENVIRONMENT": "Environmental concerns, climate change",
"LAW, CRIME AND LEGAL SYSTEMS": "Justice, crime, legal matters",
"MEDIA, COMMUNICATION AND LANGUAGE": "Media use, communication patterns",
"SOCIAL STRATIFICATION AND GROUPINGS": "Social class, inequality, social groups",
"SOCIAL WELFARE POLICY AND SYSTEMS": "Social benefits, welfare services",
"TRANSPORT AND TRAVEL": "Transportation, mobility, travel patterns",
"TRADE, INDUSTRY AND MARKETS": "Business, commerce, markets",
"SCIENCE AND TECHNOLOGY": "Scientific advancement, technology use",
"HISTORY": "Historical events, memory, heritage",
"OTHER": "General or uncategorized topics"
}
def classify_text(text):
"""Classify survey question/variable."""
if not text.strip():
return "Please enter some text to classify."
result = classifier(text)[0]
label = result['label']
score = result['score']
# Format output
output = f"**Category:** {label}\n\n"
output += f"**Confidence:** {score:.2%}\n\n"
if label in CATEGORY_INFO:
output += f"**Description:** {CATEGORY_INFO[label]}"
return output
# Example questions - REAL questions from training data (metadata_classified.csv)
# Randomly selected from actual ESS variables
examples = [
["How likely, governments in enough countries take action to reduce climate change"],
["Country"],
["Age of respondent, calculated"],
["Partner, control paid work last 7 days"],
["Ninth person in household: relationship to respondent"],
["Year of birth of eighth person in household"],
["Partner's age when completed full time education"],
["Religion or denomination belonging to in the past"],
["Which party feel closer to"],
["Highest level of education"],
["Ever unemployed and seeking work for a period more than three months"],
["Religion or denomination belonging to at present"],
["Partner doing last 7 days: housework, looking after children, others"],
["Year of birth of sixth person in household"],
["I like to be a leader, to what extent"],
["Main activity, last 7 days"],
["Mother's highest level of education"],
["Main activity last 7 days"],
["Doing last 7 days: unemployed, not actively looking for job"],
["How feminine respondent feels"],
["Father's highest level of education"],
["Trust in country's parliament"],
["How satisfied are you with the state of education"],
["How important to get respect from others"],
["Important to show abilities and be admired"],
["How often socially meet with friends, relatives or colleagues"],
["Placement on left right scale"],
["How often pray apart from at religious services"],
["Important to help people and care for others well-being"],
["Subjective general health"],
]
# Custom CSS for Sikt branding using design tokens
custom_css = """
:root {
/* Sikt Design Tokens */
--sds-color-text-primary: #1a1a1a;
--sds-color-text-secondary: #331c6c;
--sds-color-interaction-primary: #7d5da6;
--sds-color-interaction-primary-hover: #6b4d94;
--sds-color-layout-background-default: #ffffff;
--sds-color-layout-background-subtle: #f3f1fe;
--sds-color-accent-primary: #ee3243;
--sds-space-gap-small: 0.5rem;
--sds-space-gap-medium: 1rem;
--sds-space-gap-large: 1.5rem;
--sds-space-padding-small: 0.75rem;
--sds-space-padding-medium: 1rem;
--sds-space-padding-large: 1.5rem;
--sds-space-border-radius-small: 4px;
--sds-space-border-radius-medium: 8px;
--sds-space-border-radius-large: 12px;
}
.gradio-container {
font-family: "Source Sans Pro", -apple-system, BlinkMacSystemFont, "Segoe UI", sans-serif !important;
}
h1, .gr-title {
color: var(--sds-color-text-secondary) !important;
font-weight: 600 !important;
}
.gr-box {
border-radius: var(--sds-space-border-radius-medium) !important;
}
.gr-button {
background-color: var(--sds-color-interaction-primary) !important;
border-color: var(--sds-color-interaction-primary) !important;
border-radius: var(--sds-space-border-radius-small) !important;
font-weight: 500 !important;
transition: all 0.2s ease !important;
}
.gr-button:hover {
background-color: var(--sds-color-interaction-primary-hover) !important;
border-color: var(--sds-color-interaction-primary-hover) !important;
transform: translateY(-1px) !important;
box-shadow: 0 2px 8px rgba(125, 93, 166, 0.3) !important;
}
.gr-button-primary {
background: linear-gradient(135deg, var(--sds-color-interaction-primary) 0%, #6b4d94 100%) !important;
}
.gr-input, .gr-textbox {
border-color: #e0e0e0 !important;
border-radius: var(--sds-space-border-radius-small) !important;
}
.gr-input:focus, .gr-textbox:focus {
border-color: var(--sds-color-interaction-primary) !important;
box-shadow: 0 0 0 2px rgba(125, 93, 166, 0.1) !important;
}
.gr-panel {
background-color: var(--sds-color-layout-background-subtle) !important;
border-radius: var(--sds-space-border-radius-medium) !important;
padding: var(--sds-space-padding-large) !important;
}
.gr-form {
gap: var(--sds-space-gap-medium) !important;
}
footer {
background-color: var(--sds-color-layout-background-subtle) !important;
border-top: 1px solid #e0e0e0 !important;
}
.sikt-logo {
max-width: 120px;
height: auto;
}
.sikt-header {
background: linear-gradient(135deg, #f3f1fe 0%, #ffffff 100%);
padding: var(--sds-space-padding-medium);
border-radius: var(--sds-space-border-radius-medium);
margin-bottom: var(--sds-space-gap-large);
border-left: 4px solid var(--sds-color-interaction-primary);
}
"""
# Create Gradio interface with Sikt branding
demo = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(
lines=3,
placeholder="Enter a survey question or variable description...",
label="Survey Question"
),
outputs=gr.Markdown(label="Classification Result"),
title="ESS Variable Classifier Prototype",
description="""
<div class="sikt-header">
<div style="display: flex; align-items: center; gap: 1.5rem; flex-wrap: wrap;">
<img src="https://modansa.blob.core.windows.net/testcontainer/Sikt-Prim%C3%A6rlogo-M%C3%B8rk_0.png" alt="Sikt Logo" class="sikt-logo">
<div style="flex: 1; min-width: 300px;">
<h3 style="margin: 0 0 0.5rem 0; color: #331c6c; font-size: 1.25rem; font-weight: 600;">
ESS Variable Classifier Prototype
</h3>
<p style="margin: 0; color: #1a1a1a; font-size: 0.95rem; line-height: 1.5;">
Developed by <strong>Sikt</strong> – Norwegian Agency for Shared Services in Education and Research
</p>
</div>
</div>
</div>
Automatically classify European Social Survey (ESS) questions into **19 subject categories**. This AI model is fine-tuned from XLM-RoBERTa-Base and achieves **83.8% accuracy**.
**⚠️ Prototype Notice:** This model is trained on 582 samples. Only **8 categories** have reliable training data (β‰₯20 samples): **Education, Politics, Society and Culture, Demography, Labour and Employment, Health, Psychology, and Other**. Results for other categories should be interpreted with caution.
""",
examples=examples,
article="""
<div style="margin-top: 2rem; padding-top: 2rem; border-top: 2px solid var(--sds-color-layout-background-subtle);">
<div style="background: linear-gradient(135deg, #f3f1fe 0%, #ffffff 100%); padding: 1.5rem; border-radius: var(--sds-space-border-radius-medium); margin-bottom: 2rem; border-left: 4px solid var(--sds-color-interaction-primary);">
<h3 style="color: var(--sds-color-text-secondary); margin-top: 0; font-weight: 600;">πŸ“Š About This Tool</h3>
<p style="color: var(--sds-color-text-primary); line-height: 1.6;">
This classifier helps researchers and data managers organize survey variables by automatically
categorizing them into subject areas. The model was trained on European Social Survey metadata
and can classify questions into <strong>19 major categories</strong> from the
<a href="https://vocabularies.cessda.eu/vocabulary/TopicClassification" target="_blank" style="color: var(--sds-color-interaction-primary); text-decoration: none; font-weight: 600;">CESSDA Topic Classification</a>:
</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 0.5rem; margin-top: 1rem;">
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ“š EDUCATION</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ›οΈ POLITICS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ₯ HEALTH</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ’Ό LABOUR AND EMPLOYMENT</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">🌍 SOCIETY AND CULTURE</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ’° ECONOMICS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">🧠 PSYCHOLOGY</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ‘₯ DEMOGRAPHY (POPULATION, VITAL STATISTICS, AND CENSUSES)</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">🏠 HOUSING AND LAND USE</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">🌱 NATURAL ENVIRONMENT</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">βš–οΈ LAW, CRIME AND LEGAL SYSTEMS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ“Ί MEDIA, COMMUNICATION AND LANGUAGE</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ‘” SOCIAL STRATIFICATION AND GROUPINGS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">🀝 SOCIAL WELFARE POLICY AND SYSTEMS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸš— TRANSPORT AND TRAVEL</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸͺ TRADE, INDUSTRY AND MARKETS</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ”¬ SCIENCE AND TECHNOLOGY</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ“œ HISTORY</span>
<span style="padding: 0.5rem; background: white; border-radius: 4px; font-size: 0.8rem; border-left: 3px solid #7d5da6;">πŸ“‹ OTHER</span>
</div>
</div>
<div style="background: white; padding: 1.5rem; border-radius: var(--sds-space-border-radius-medium); margin-bottom: 2rem; border: 1px solid #e0e0e0;">
<h3 style="color: var(--sds-color-text-secondary); margin-top: 0; font-weight: 600;">πŸ”¬ Technical Details</h3>
<ul style="color: var(--sds-color-text-primary); line-height: 1.8; padding-left: 1.5rem;">
<li><strong>Base Model:</strong> <a href="https://huggingface.co/FacebookAI/xlm-roberta-base" style="color: var(--sds-color-interaction-primary);">XLM-RoBERTa-Base</a> (125M parameters)</li>
<li><strong>Fine-tuned Model:</strong> <a href="https://huggingface.co/benjaminBeuster/xlm-roberta-base-ess-classification" style="color: var(--sds-color-interaction-primary);">benjaminBeuster/xlm-roberta-base-ess-classification</a></li>
<li><strong>Performance:</strong> 83.8% accuracy | F1: 0.796 (weighted) | 105 test samples</li>
<li><strong>Training Data:</strong> <a href="https://huggingface.co/datasets/benjaminBeuster/ess_classification" style="color: var(--sds-color-interaction-primary);">ESS Classification Dataset</a></li>
</ul>
</div>
<div style="background: linear-gradient(135deg, var(--sds-color-layout-background-subtle) 0%, white 100%); padding: 1.5rem; border-radius: var(--sds-space-border-radius-medium); text-align: center;">
<h3 style="color: var(--sds-color-text-secondary); margin-top: 0; font-weight: 600;">About Sikt</h3>
<p style="color: var(--sds-color-text-primary); line-height: 1.6; max-width: 600px; margin: 0 auto 1rem auto;">
<a href="https://sikt.no" style="color: var(--sds-color-interaction-primary); text-decoration: none; font-weight: 600;">Sikt</a>
– Norwegian Agency for Shared Services in Education and Research provides digital infrastructure
and services for research and education in Norway.
</p>
<p style="margin-top: 1.5rem;">
<a href="https://sikt.no" style="display: inline-block; padding: 0.75rem 1.5rem; background-color: var(--sds-color-interaction-primary); color: white; text-decoration: none; border-radius: var(--sds-space-border-radius-small); font-weight: 600; transition: all 0.2s;">
Visit sikt.no β†’
</a>
</p>
</div>
</div>
""",
theme=gr.themes.Soft(
primary_hue="red",
secondary_hue="purple",
),
css=custom_css
)
if __name__ == "__main__":
demo.launch()