Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -195,40 +195,25 @@ demo = gr.Interface(
|
|
| 195 |
label="Survey Question"
|
| 196 |
),
|
| 197 |
outputs=gr.Markdown(label="Classification Result"),
|
| 198 |
-
title="ESS Variable
|
| 199 |
description="""
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
</div>
|
| 211 |
</div>
|
| 212 |
</div>
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
<p style="font-size: 1.05rem; color: var(--sds-color-text-primary); line-height: 1.6;">
|
| 216 |
-
Automatically classify European Social Survey (ESS) questions into <strong>19 subject categories</strong>.
|
| 217 |
-
This AI model is fine-tuned from XLM-RoBERTa-Base and achieves <strong>83.8% accuracy</strong>.
|
| 218 |
-
</p>
|
| 219 |
|
| 220 |
-
|
| 221 |
-
<p style="margin: 0; color: #8b5a00; font-weight: 600; font-size: 0.95rem;">
|
| 222 |
-
⚠️ <strong>Prototype Notice</strong>
|
| 223 |
-
</p>
|
| 224 |
-
<p style="margin: 0.5rem 0 0 0; color: #8b5a00; font-size: 0.9rem; line-height: 1.5;">
|
| 225 |
-
This is a <strong>prototype model</strong> trained on <strong>582 samples</strong>.
|
| 226 |
-
Only <strong>8 categories</strong> have sufficient training data (≥20 samples) and can be considered reliable:
|
| 227 |
-
<strong>Education, Politics, Society and Culture, Demography, Labour and Employment, Health, Psychology, and Other</strong>.
|
| 228 |
-
Results for remaining categories should be interpreted with caution.
|
| 229 |
-
</p>
|
| 230 |
-
</div>
|
| 231 |
-
</div>
|
| 232 |
""",
|
| 233 |
examples=examples,
|
| 234 |
article="""
|
|
|
|
| 195 |
label="Survey Question"
|
| 196 |
),
|
| 197 |
outputs=gr.Markdown(label="Classification Result"),
|
| 198 |
+
title="ESS Variable Classifier Prototype",
|
| 199 |
description="""
|
| 200 |
+
<div class="sikt-header">
|
| 201 |
+
<div style="display: flex; align-items: center; gap: 1.5rem; flex-wrap: wrap;">
|
| 202 |
+
<img src="https://modansa.blob.core.windows.net/testcontainer/Sikt-Prim%C3%A6rlogo-M%C3%B8rk_0.png" alt="Sikt Logo" class="sikt-logo">
|
| 203 |
+
<div style="flex: 1; min-width: 300px;">
|
| 204 |
+
<h3 style="margin: 0 0 0.5rem 0; color: #331c6c; font-size: 1.25rem; font-weight: 600;">
|
| 205 |
+
ESS Variable Classifier Prototype
|
| 206 |
+
</h3>
|
| 207 |
+
<p style="margin: 0; color: #1a1a1a; font-size: 0.95rem; line-height: 1.5;">
|
| 208 |
+
Developed by <strong>Sikt</strong> – Norwegian Agency for Shared Services in Education and Research
|
| 209 |
+
</p>
|
|
|
|
| 210 |
</div>
|
| 211 |
</div>
|
| 212 |
+
</div>
|
| 213 |
|
| 214 |
+
Automatically classify European Social Survey (ESS) questions into **19 subject categories**. This AI model is fine-tuned from XLM-RoBERTa-Base and achieves **83.8% accuracy**.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
**⚠️ Prototype Notice:** This model is trained on 582 samples. Only **8 categories** have reliable training data (≥20 samples): **Education, Politics, Society and Culture, Demography, Labour and Employment, Health, Psychology, and Other**. Results for other categories should be interpreted with caution.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
""",
|
| 218 |
examples=examples,
|
| 219 |
article="""
|