GFPGAN-V1.3-whole-image / PaperModel.md
tjxj
Add application file
2a8871c
|
raw
history blame
3.15 kB
# Installation
We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions. See [here](README.md#installation) for this easier installation.<br>
If you want want to use the original model in our paper, please follow the instructions below.
1. Clone repo
```bash
git clone https://github.com/xinntao/GFPGAN.git
cd GFPGAN
```
1. Install dependent packages
As StyleGAN2 uses customized PyTorch C++ extensions, you need to **compile them during installation** or **load them just-in-time(JIT)**.
You can refer to [BasicSR-INSTALL.md](https://github.com/xinntao/BasicSR/blob/master/INSTALL.md) for more details.
**Option 1: Load extensions just-in-time(JIT)** (For those just want to do simple inferences, may have less issues)
```bash
# Install basicsr - https://github.com/xinntao/BasicSR
# We use BasicSR for both training and inference
pip install basicsr
# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib
pip install -r requirements.txt
python setup.py develop
# remember to set BASICSR_JIT=True before your running commands
```
**Option 2: Compile extensions during installation** (For those need to train/inference for many times)
```bash
# Install basicsr - https://github.com/xinntao/BasicSR
# We use BasicSR for both training and inference
# Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient
# Add -vvv for detailed log prints
BASICSR_EXT=True pip install basicsr -vvv
# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib
pip install -r requirements.txt
python setup.py develop
```
## :zap: Quick Inference
Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth)
```bash
wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models
```
- Option 1: Load extensions just-in-time(JIT)
```bash
BASICSR_JIT=True python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1
# for aligned images
BASICSR_JIT=True python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --save_root results --arch original --channel 1 --aligned
```
- Option 2: Have successfully compiled extensions during installation
```bash
python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1
# for aligned images
python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --save_root results --arch original --channel 1 --aligned
```