shipnet / app.py
Mehmet Batuhan Duman
Changed scan func
67b8498
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from functools import partial
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(64 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=1)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2)
self.dropout2 = nn.Dropout(0.25)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1)
self.pool3 = nn.MaxPool2d(2, 2)
self.dropout3 = nn.Dropout(0.25)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1)
self.pool4 = nn.MaxPool2d(2, 2)
self.dropout4 = nn.Dropout(0.25)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(32 * 5 * 5, 200)
self.fc2 = nn.Linear(200, 150)
self.fc3 = nn.Linear(150, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.conv2(x))
x = self.pool2(x)
x = self.dropout2(x)
x = F.relu(self.conv3(x))
x = self.pool3(x)
x = self.dropout3(x)
x = F.relu(self.conv4(x))
x = self.pool4(x)
x = self.dropout4(x)
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.sigmoid(self.fc3(x))
return x
model = None
model_path = "model3.pth"
model2 = None
model2_path = "model4.pth"
if os.path.exists(model_path):
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "")
new_state_dict[new_key] = value
model = Net()
model.load_state_dict(new_state_dict)
model.eval()
else:
print("Model file not found at", model_path)
# def process_image(input_image):
# image = Image.fromarray(input_image).convert("RGB")
#
# start_time = time.time()
# heatmap = scanmap(np.array(image), model)
# elapsed_time = time.time() - start_time
# heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
#
# heatmap_img = heatmap_img.resize(image.size)
#
# return image, heatmap_img, int(elapsed_time)
#
#
# def scanmap(image_np, model):
# image_np = image_np.astype(np.float32) / 255.0
#
# window_size = (80, 80)
# stride = 10
#
# height, width, channels = image_np.shape
#
# probabilities_map = []
#
# for y in range(0, height - window_size[1] + 1, stride):
# row_probabilities = []
# for x in range(0, width - window_size[0] + 1, stride):
# cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
# cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
#
# with torch.no_grad():
# probabilities = model(cropped_window_torch)
#
# row_probabilities.append(probabilities[0, 1].item())
#
# probabilities_map.append(row_probabilities)
#
# probabilities_map = np.array(probabilities_map)
# return probabilities_map
#
# def gradio_process_image(input_image):
# original, heatmap, elapsed_time = process_image(input_image)
# return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
#
# inputs = gr.Image(label="Upload Image")
# outputs = [
# gr.Image(label="Original Image"),
# gr.Image(label="Heatmap"),
# gr.Textbox(label="Elapsed Time")
# ]
#
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()
def scanmap(image_np, model, threshold=0.5):
image_np = image_np.astype(np.float32) / 255.0
window_size = (80, 80)
stride = 10
height, width, channels = image_np.shape
fig, ax = plt.subplots(1)
ax.imshow(image_np)
for y in range(0, height - window_size[1] + 1, stride):
for x in range(0, width - window_size[0] + 1, stride):
cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
with torch.no_grad():
probabilities = model(cropped_window_torch)
# if probability is greater than threshold, draw a bounding box
if probabilities[0, 1].item() > threshold:
rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
facecolor='none')
ax.add_patch(rect)
# Convert matplotlib figure to PIL Image
fig.canvas.draw()
img_arr = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
img = Image.fromarray(img_arr)
return img
def process_image(input_image):
image = Image.fromarray(input_image).convert("RGB")
start_time = time.time()
detected_ships_image = scanmap(np.array(image), model)
elapsed_time = time.time() - start_time
return image, detected_ships_image, int(elapsed_time)
def gradio_process_image(input_image):
original, detected_ships_image, elapsed_time = process_image(input_image)
return original, detected_ships_image, f"Elapsed Time (seconds): {elapsed_time}"
inputs = gr.Image(label="Upload Image")
outputs = [
gr.Image(label="Original Image"),
gr.Image(label="Heatmap"),
gr.Textbox(label="Elapsed Time")
]
iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
iface.launch()