simran0608 commited on
Commit
98b0379
·
verified ·
1 Parent(s): 346c8ea

Upload 9 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ a2z_insurance.sas7bdat filter=lfs diff=lfs merge=lfs -text
Customer-Segmentation.png ADDED
a2z_insurance.sas7bdat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18fdae65702cad280f8bc8ed6a5ebfad7a0053308d176587b92adca3dbd20364
3
+ size 1507328
bankingdata.csv ADDED
The diff for this file is too large to render. See raw diff
 
clustering.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.cluster import KMeans
2
+ from sklearn.metrics import silhouette_score
3
+ from sklearn.preprocessing import StandardScaler
4
+ import streamlit as st
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ import pandas as pd
8
+ from sklearn.decomposition import PCA
9
+
10
+
11
+ def perform_clustering(df, n_clusters):
12
+ df = df.dropna()
13
+
14
+ scaler = StandardScaler()
15
+ df_value_scaled = scaler.fit_transform(df)
16
+
17
+ # Apply KMeans with the selected number of clusters
18
+ model = KMeans(n_clusters=n_clusters, random_state=42)
19
+ model.fit(df_value_scaled)
20
+ labels = model.predict(df_value_scaled)
21
+ score = silhouette_score(df_value_scaled, labels)
22
+
23
+ df['Cluster'] = labels
24
+ return df, score, df_value_scaled, labels, model
25
+
26
+ def plot_clusters(df_value_scaled, labels, new_data_point=None):
27
+ pca = PCA(n_components=2)
28
+ components = pca.fit_transform(df_value_scaled)
29
+ df_components = pd.DataFrame(data=components, columns=['PC1', 'PC2'])
30
+ df_components['Cluster'] = labels
31
+
32
+ plt.figure(figsize=(10, 6))
33
+ sns.scatterplot(x='PC1', y='PC2', hue='Cluster', data=df_components, palette='viridis', s=100, alpha=0.7)
34
+
35
+ # Plot new data point if provided
36
+ if new_data_point is not None:
37
+ plt.scatter(new_data_point[:, 0], new_data_point[:, 1], color='red', marker='o', s=100, label='New Data Point')
38
+
39
+ plt.title('Cluster Visualization')
40
+ plt.xlabel('Principal Component 1')
41
+ plt.ylabel('Principal Component 2')
42
+ plt.legend(title='Cluster')
43
+ st.pyplot(plt)
data_preparation.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+
4
+ def preprocess_data(data):
5
+ if 'CustID' in data.columns:
6
+ data = data.drop(columns=['CustID'])
7
+ if 'Channel' in data.columns:
8
+ data = data.drop(columns=['Channel'])
9
+ if 'Region' in data.columns:
10
+ data = data.drop(columns=['Region'])
11
+
12
+
13
+ data = remove_outliers(data)
14
+ return data
15
+
16
+ def remove_outliers(df, threshold=3):
17
+ df_numeric = df.select_dtypes(include=[float, int])
18
+ z_scores = np.abs((df_numeric - df_numeric.mean()) / df_numeric.std())
19
+ df_clean = df[(z_scores < threshold).all(axis=1)]
20
+ return df_clean
feature_selection.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.preprocessing import StandardScaler
2
+ from sklearn.impute import SimpleImputer
3
+ from sklearn.decomposition import PCA
4
+ from sklearn.feature_selection import RFE
5
+ from sklearn.ensemble import RandomForestRegressor
6
+ from sklearn.linear_model import LinearRegression
7
+
8
+ def select_features_pca(df, n_components):
9
+ df_numeric = df.select_dtypes(include=[float, int])
10
+
11
+ imputer = SimpleImputer(strategy='mean')
12
+ df_imputed = imputer.fit_transform(df_numeric)
13
+
14
+ scaler = StandardScaler()
15
+ df_scaled = scaler.fit_transform(df_imputed)
16
+
17
+ pca = PCA(n_components=n_components)
18
+ components = pca.fit_transform(df_scaled)
19
+
20
+ feature_names = df_numeric.columns
21
+ important_features = feature_names[:n_components]
22
+
23
+ return df[important_features], important_features
24
+
25
+ def select_features_rfe(df, n_features_to_select):
26
+ df_numeric = df.select_dtypes(include=[float, int])
27
+
28
+ imputer = SimpleImputer(strategy='mean')
29
+ df_imputed = imputer.fit_transform(df_numeric)
30
+
31
+ scaler = StandardScaler()
32
+ df_scaled = scaler.fit_transform(df_imputed)
33
+
34
+ model = LinearRegression()
35
+ rfe = RFE(estimator=model, n_features_to_select=n_features_to_select)
36
+ rfe.fit(df_scaled, df_scaled[:, 0])
37
+
38
+ important_features = [df_numeric.columns[i] for i in range(len(rfe.support_)) if rfe.support_[i]]
39
+
40
+ return df[important_features], important_features
41
+
42
+ def select_features_rf(df, n_features_to_select):
43
+ df_numeric = df.select_dtypes(include=[float, int])
44
+
45
+ imputer = SimpleImputer(strategy='mean')
46
+ df_imputed = imputer.fit_transform(df_numeric)
47
+
48
+ scaler = StandardScaler()
49
+ df_scaled = scaler.fit_transform(df_imputed)
50
+
51
+ model = RandomForestRegressor()
52
+ model.fit(df_scaled, df_scaled[:, 0])
53
+
54
+ importances = model.feature_importances_
55
+ indices = importances.argsort()[-n_features_to_select:][::-1]
56
+
57
+ important_features = [df_numeric.columns[i] for i in indices]
58
+
59
+ return df[important_features], important_features
predict.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn.preprocessing import StandardScaler
4
+
5
+ def predict_cluster(model, selected_features):
6
+ st.write("### Predict Cluster")
7
+
8
+ user_input = {}
9
+ for feature in selected_features:
10
+ user_input[feature] = st.number_input(f'Enter {feature}', value=0.0)
11
+
12
+ user_df = pd.DataFrame(user_input, index=[0])
13
+
14
+ scaler = StandardScaler()
15
+ user_df_scaled = scaler.fit_transform(user_df)
16
+
17
+ cluster = model.predict(user_df_scaled)
18
+ st.write(f'The predicted cluster for the input data is: {cluster[0]}')
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ matplotlib
2
+ plotly
3
+ scikit-learn
4
+ streamlit
5
+ seaborn
6
+ squarify
7
+ import-ipynb
8
+ utils
9
+ squarify
10
+ findspark
retaildata.csv ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Channel,Region,Fresh,Milk,Grocery,Frozen,Detergents_Paper,Delicassen
2
+ 2,3,12669,9656,7561,214,2674,1338
3
+ 2,3,7057,9810,9568,1762,3293,1776
4
+ 2,3,6353,8808,7684,2405,3516,7844
5
+ 1,3,13265,1196,4221,6404,507,1788
6
+ 2,3,22615,5410,7198,3915,1777,5185
7
+ 2,3,9413,8259,5126,666,1795,1451
8
+ 2,3,12126,3199,6975,480,3140,545
9
+ 2,3,7579,4956,9426,1669,3321,2566
10
+ 1,3,5963,3648,6192,425,1716,750
11
+ 2,3,6006,11093,18881,1159,7425,2098
12
+ 2,3,3366,5403,12974,4400,5977,1744
13
+ 2,3,13146,1124,4523,1420,549,497
14
+ 2,3,31714,12319,11757,287,3881,2931
15
+ 2,3,21217,6208,14982,3095,6707,602
16
+ 2,3,24653,9465,12091,294,5058,2168
17
+ 1,3,10253,1114,3821,397,964,412
18
+ 2,3,1020,8816,12121,134,4508,1080
19
+ 1,3,5876,6157,2933,839,370,4478
20
+ 2,3,18601,6327,10099,2205,2767,3181
21
+ 1,3,7780,2495,9464,669,2518,501
22
+ 2,3,17546,4519,4602,1066,2259,2124
23
+ 1,3,5567,871,2010,3383,375,569
24
+ 1,3,31276,1917,4469,9408,2381,4334
25
+ 2,3,26373,36423,22019,5154,4337,16523
26
+ 2,3,22647,9776,13792,2915,4482,5778
27
+ 2,3,16165,4230,7595,201,4003,57
28
+ 1,3,9898,961,2861,3151,242,833
29
+ 1,3,14276,803,3045,485,100,518
30
+ 2,3,4113,20484,25957,1158,8604,5206
31
+ 1,3,43088,2100,2609,1200,1107,823
32
+ 1,3,18815,3610,11107,1148,2134,2963
33
+ 1,3,2612,4339,3133,2088,820,985
34
+ 1,3,21632,1318,2886,266,918,405
35
+ 1,3,29729,4786,7326,6130,361,1083
36
+ 1,3,1502,1979,2262,425,483,395
37
+ 2,3,688,5491,11091,833,4239,436
38
+ 1,3,29955,4362,5428,1729,862,4626
39
+ 2,3,15168,10556,12477,1920,6506,714
40
+ 2,3,4591,15729,16709,33,6956,433
41
+ 1,3,56159,555,902,10002,212,2916
42
+ 1,3,24025,4332,4757,9510,1145,5864
43
+ 1,3,19176,3065,5956,2033,2575,2802
44
+ 2,3,10850,7555,14961,188,6899,46
45
+ 2,3,630,11095,23998,787,9529,72
46
+ 2,3,9670,7027,10471,541,4618,65
47
+ 2,3,5181,22044,21531,1740,7353,4985
48
+ 2,3,3103,14069,21955,1668,6792,1452
49
+ 2,3,44466,54259,55571,7782,24171,6465
50
+ 2,3,11519,6152,10868,584,5121,1476
51
+ 2,3,4967,21412,28921,1798,13583,1163
52
+ 1,3,6269,1095,1980,3860,609,2162
53
+ 1,3,3347,4051,6996,239,1538,301
54
+ 2,3,40721,3916,5876,532,2587,1278
55
+ 2,3,491,10473,11532,744,5611,224
56
+ 1,3,27329,1449,1947,2436,204,1333
57
+ 1,3,5264,3683,5005,1057,2024,1130
58
+ 2,3,4098,29892,26866,2616,17740,1340
59
+ 2,3,5417,9933,10487,38,7572,1282
60
+ 1,3,13779,1970,1648,596,227,436
61
+ 1,3,6137,5360,8040,129,3084,1603
62
+ 2,3,8590,3045,7854,96,4095,225
63
+ 2,3,35942,38369,59598,3254,26701,2017
64
+ 2,3,7823,6245,6544,4154,4074,964
65
+ 2,3,9396,11601,15775,2896,7677,1295
66
+ 1,3,4760,1227,3250,3724,1247,1145
67
+ 2,3,85,20959,45828,36,24231,1423
68
+ 1,3,9,1534,7417,175,3468,27
69
+ 2,3,19913,6759,13462,1256,5141,834
70
+ 1,3,2446,7260,3993,5870,788,3095
71
+ 1,3,8352,2820,1293,779,656,144
72
+ 1,3,16705,2037,3202,10643,116,1365
73
+ 1,3,18291,1266,21042,5373,4173,14472
74
+ 1,3,4420,5139,2661,8872,1321,181
75
+ 2,3,19899,5332,8713,8132,764,648
76
+ 2,3,8190,6343,9794,1285,1901,1780
77
+ 1,3,20398,1137,3,4407,3,975
78
+ 1,3,717,3587,6532,7530,529,894
79
+ 2,3,12205,12697,28540,869,12034,1009
80
+ 1,3,10766,1175,2067,2096,301,167
81
+ 1,3,1640,3259,3655,868,1202,1653
82
+ 1,3,7005,829,3009,430,610,529
83
+ 2,3,219,9540,14403,283,7818,156
84
+ 2,3,10362,9232,11009,737,3537,2342
85
+ 1,3,20874,1563,1783,2320,550,772
86
+ 2,3,11867,3327,4814,1178,3837,120
87
+ 2,3,16117,46197,92780,1026,40827,2944
88
+ 2,3,22925,73498,32114,987,20070,903
89
+ 1,3,43265,5025,8117,6312,1579,14351
90
+ 1,3,7864,542,4042,9735,165,46
91
+ 1,3,24904,3836,5330,3443,454,3178
92
+ 1,3,11405,596,1638,3347,69,360
93
+ 1,3,12754,2762,2530,8693,627,1117
94
+ 2,3,9198,27472,32034,3232,18906,5130
95
+ 1,3,11314,3090,2062,35009,71,2698
96
+ 2,3,5626,12220,11323,206,5038,244
97
+ 1,3,3,2920,6252,440,223,709
98
+ 2,3,23,2616,8118,145,3874,217
99
+ 1,3,403,254,610,774,54,63
100
+ 1,3,503,112,778,895,56,132
101
+ 1,3,9658,2182,1909,5639,215,323
102
+ 2,3,11594,7779,12144,3252,8035,3029
103
+ 2,3,1420,10810,16267,1593,6766,1838
104
+ 2,3,2932,6459,7677,2561,4573,1386
105
+ 1,3,56082,3504,8906,18028,1480,2498
106
+ 1,3,14100,2132,3445,1336,1491,548
107
+ 1,3,15587,1014,3970,910,139,1378
108
+ 2,3,1454,6337,10704,133,6830,1831
109
+ 2,3,8797,10646,14886,2471,8969,1438
110
+ 2,3,1531,8397,6981,247,2505,1236
111
+ 2,3,1406,16729,28986,673,836,3
112
+ 1,3,11818,1648,1694,2276,169,1647
113
+ 2,3,12579,11114,17569,805,6457,1519
114
+ 1,3,19046,2770,2469,8853,483,2708
115
+ 1,3,14438,2295,1733,3220,585,1561
116
+ 1,3,18044,1080,2000,2555,118,1266
117
+ 1,3,11134,793,2988,2715,276,610
118
+ 1,3,11173,2521,3355,1517,310,222
119
+ 1,3,6990,3880,5380,1647,319,1160
120
+ 1,3,20049,1891,2362,5343,411,933
121
+ 1,3,8258,2344,2147,3896,266,635
122
+ 1,3,17160,1200,3412,2417,174,1136
123
+ 1,3,4020,3234,1498,2395,264,255
124
+ 1,3,12212,201,245,1991,25,860
125
+ 2,3,11170,10769,8814,2194,1976,143
126
+ 1,3,36050,1642,2961,4787,500,1621
127
+ 1,3,76237,3473,7102,16538,778,918
128
+ 1,3,19219,1840,1658,8195,349,483
129
+ 2,3,21465,7243,10685,880,2386,2749
130
+ 1,3,140,8847,3823,142,1062,3
131
+ 1,3,42312,926,1510,1718,410,1819
132
+ 1,3,7149,2428,699,6316,395,911
133
+ 1,3,2101,589,314,346,70,310
134
+ 1,3,14903,2032,2479,576,955,328
135
+ 1,3,9434,1042,1235,436,256,396
136
+ 1,3,7388,1882,2174,720,47,537
137
+ 1,3,6300,1289,2591,1170,199,326
138
+ 1,3,4625,8579,7030,4575,2447,1542
139
+ 1,3,3087,8080,8282,661,721,36
140
+ 1,3,13537,4257,5034,155,249,3271
141
+ 1,3,5387,4979,3343,825,637,929
142
+ 1,3,17623,4280,7305,2279,960,2616
143
+ 1,3,30379,13252,5189,321,51,1450
144
+ 1,3,37036,7152,8253,2995,20,3
145
+ 1,3,10405,1596,1096,8425,399,318
146
+ 1,3,18827,3677,1988,118,516,201
147
+ 2,3,22039,8384,34792,42,12591,4430
148
+ 1,3,7769,1936,2177,926,73,520
149
+ 1,3,9203,3373,2707,1286,1082,526
150
+ 1,3,5924,584,542,4052,283,434
151
+ 1,3,31812,1433,1651,800,113,1440
152
+ 1,3,16225,1825,1765,853,170,1067
153
+ 1,3,1289,3328,2022,531,255,1774
154
+ 1,3,18840,1371,3135,3001,352,184
155
+ 1,3,3463,9250,2368,779,302,1627
156
+ 1,3,622,55,137,75,7,8
157
+ 2,3,1989,10690,19460,233,11577,2153
158
+ 2,3,3830,5291,14855,317,6694,3182
159
+ 1,3,17773,1366,2474,3378,811,418
160
+ 2,3,2861,6570,9618,930,4004,1682
161
+ 2,3,355,7704,14682,398,8077,303
162
+ 2,3,1725,3651,12822,824,4424,2157
163
+ 1,3,12434,540,283,1092,3,2233
164
+ 1,3,15177,2024,3810,2665,232,610
165
+ 2,3,5531,15726,26870,2367,13726,446
166
+ 2,3,5224,7603,8584,2540,3674,238
167
+ 2,3,15615,12653,19858,4425,7108,2379
168
+ 2,3,4822,6721,9170,993,4973,3637
169
+ 1,3,2926,3195,3268,405,1680,693
170
+ 1,3,5809,735,803,1393,79,429
171
+ 1,3,5414,717,2155,2399,69,750
172
+ 2,3,260,8675,13430,1116,7015,323
173
+ 2,3,200,25862,19816,651,8773,6250
174
+ 1,3,955,5479,6536,333,2840,707
175
+ 2,3,514,7677,19805,937,9836,716
176
+ 1,3,286,1208,5241,2515,153,1442
177
+ 2,3,2343,7845,11874,52,4196,1697
178
+ 1,3,45640,6958,6536,7368,1532,230
179
+ 1,3,12759,7330,4533,1752,20,2631
180
+ 1,3,11002,7075,4945,1152,120,395
181
+ 1,3,3157,4888,2500,4477,273,2165
182
+ 1,3,12356,6036,8887,402,1382,2794
183
+ 1,3,112151,29627,18148,16745,4948,8550
184
+ 1,3,694,8533,10518,443,6907,156
185
+ 1,3,36847,43950,20170,36534,239,47943
186
+ 1,3,327,918,4710,74,334,11
187
+ 1,3,8170,6448,1139,2181,58,247
188
+ 1,3,3009,521,854,3470,949,727
189
+ 1,3,2438,8002,9819,6269,3459,3
190
+ 2,3,8040,7639,11687,2758,6839,404
191
+ 2,3,834,11577,11522,275,4027,1856
192
+ 1,3,16936,6250,1981,7332,118,64
193
+ 1,3,13624,295,1381,890,43,84
194
+ 1,3,5509,1461,2251,547,187,409
195
+ 2,3,180,3485,20292,959,5618,666
196
+ 1,3,7107,1012,2974,806,355,1142
197
+ 1,3,17023,5139,5230,7888,330,1755
198
+ 1,1,30624,7209,4897,18711,763,2876
199
+ 2,1,2427,7097,10391,1127,4314,1468
200
+ 1,1,11686,2154,6824,3527,592,697
201
+ 1,1,9670,2280,2112,520,402,347
202
+ 2,1,3067,13240,23127,3941,9959,731
203
+ 2,1,4484,14399,24708,3549,14235,1681
204
+ 1,1,25203,11487,9490,5065,284,6854
205
+ 1,1,583,685,2216,469,954,18
206
+ 1,1,1956,891,5226,1383,5,1328
207
+ 2,1,1107,11711,23596,955,9265,710
208
+ 1,1,6373,780,950,878,288,285
209
+ 2,1,2541,4737,6089,2946,5316,120
210
+ 1,1,1537,3748,5838,1859,3381,806
211
+ 2,1,5550,12729,16767,864,12420,797
212
+ 1,1,18567,1895,1393,1801,244,2100
213
+ 2,1,12119,28326,39694,4736,19410,2870
214
+ 1,1,7291,1012,2062,1291,240,1775
215
+ 1,1,3317,6602,6861,1329,3961,1215
216
+ 2,1,2362,6551,11364,913,5957,791
217
+ 1,1,2806,10765,15538,1374,5828,2388
218
+ 2,1,2532,16599,36486,179,13308,674
219
+ 1,1,18044,1475,2046,2532,130,1158
220
+ 2,1,18,7504,15205,1285,4797,6372
221
+ 1,1,4155,367,1390,2306,86,130
222
+ 1,1,14755,899,1382,1765,56,749
223
+ 1,1,5396,7503,10646,91,4167,239
224
+ 1,1,5041,1115,2856,7496,256,375
225
+ 2,1,2790,2527,5265,5612,788,1360
226
+ 1,1,7274,659,1499,784,70,659
227
+ 1,1,12680,3243,4157,660,761,786
228
+ 2,1,20782,5921,9212,1759,2568,1553
229
+ 1,1,4042,2204,1563,2286,263,689
230
+ 1,1,1869,577,572,950,4762,203
231
+ 1,1,8656,2746,2501,6845,694,980
232
+ 2,1,11072,5989,5615,8321,955,2137
233
+ 1,1,2344,10678,3828,1439,1566,490
234
+ 1,1,25962,1780,3838,638,284,834
235
+ 1,1,964,4984,3316,937,409,7
236
+ 1,1,15603,2703,3833,4260,325,2563
237
+ 1,1,1838,6380,2824,1218,1216,295
238
+ 1,1,8635,820,3047,2312,415,225
239
+ 1,1,18692,3838,593,4634,28,1215
240
+ 1,1,7363,475,585,1112,72,216
241
+ 1,1,47493,2567,3779,5243,828,2253
242
+ 1,1,22096,3575,7041,11422,343,2564
243
+ 1,1,24929,1801,2475,2216,412,1047
244
+ 1,1,18226,659,2914,3752,586,578
245
+ 1,1,11210,3576,5119,561,1682,2398
246
+ 1,1,6202,7775,10817,1183,3143,1970
247
+ 2,1,3062,6154,13916,230,8933,2784
248
+ 1,1,8885,2428,1777,1777,430,610
249
+ 1,1,13569,346,489,2077,44,659
250
+ 1,1,15671,5279,2406,559,562,572
251
+ 1,1,8040,3795,2070,6340,918,291
252
+ 1,1,3191,1993,1799,1730,234,710
253
+ 2,1,6134,23133,33586,6746,18594,5121
254
+ 1,1,6623,1860,4740,7683,205,1693
255
+ 1,1,29526,7961,16966,432,363,1391
256
+ 1,1,10379,17972,4748,4686,1547,3265
257
+ 1,1,31614,489,1495,3242,111,615
258
+ 1,1,11092,5008,5249,453,392,373
259
+ 1,1,8475,1931,1883,5004,3593,987
260
+ 1,1,56083,4563,2124,6422,730,3321
261
+ 1,1,53205,4959,7336,3012,967,818
262
+ 1,1,9193,4885,2157,327,780,548
263
+ 1,1,7858,1110,1094,6818,49,287
264
+ 1,1,23257,1372,1677,982,429,655
265
+ 1,1,2153,1115,6684,4324,2894,411
266
+ 2,1,1073,9679,15445,61,5980,1265
267
+ 1,1,5909,23527,13699,10155,830,3636
268
+ 2,1,572,9763,22182,2221,4882,2563
269
+ 1,1,20893,1222,2576,3975,737,3628
270
+ 2,1,11908,8053,19847,1069,6374,698
271
+ 1,1,15218,258,1138,2516,333,204
272
+ 1,1,4720,1032,975,5500,197,56
273
+ 1,1,2083,5007,1563,1120,147,1550
274
+ 1,1,514,8323,6869,529,93,1040
275
+ 1,3,36817,3045,1493,4802,210,1824
276
+ 1,3,894,1703,1841,744,759,1153
277
+ 1,3,680,1610,223,862,96,379
278
+ 1,3,27901,3749,6964,4479,603,2503
279
+ 1,3,9061,829,683,16919,621,139
280
+ 1,3,11693,2317,2543,5845,274,1409
281
+ 2,3,17360,6200,9694,1293,3620,1721
282
+ 1,3,3366,2884,2431,977,167,1104
283
+ 2,3,12238,7108,6235,1093,2328,2079
284
+ 1,3,49063,3965,4252,5970,1041,1404
285
+ 1,3,25767,3613,2013,10303,314,1384
286
+ 1,3,68951,4411,12609,8692,751,2406
287
+ 1,3,40254,640,3600,1042,436,18
288
+ 1,3,7149,2247,1242,1619,1226,128
289
+ 1,3,15354,2102,2828,8366,386,1027
290
+ 1,3,16260,594,1296,848,445,258
291
+ 1,3,42786,286,471,1388,32,22
292
+ 1,3,2708,2160,2642,502,965,1522
293
+ 1,3,6022,3354,3261,2507,212,686
294
+ 1,3,2838,3086,4329,3838,825,1060
295
+ 2,2,3996,11103,12469,902,5952,741
296
+ 1,2,21273,2013,6550,909,811,1854
297
+ 2,2,7588,1897,5234,417,2208,254
298
+ 1,2,19087,1304,3643,3045,710,898
299
+ 2,2,8090,3199,6986,1455,3712,531
300
+ 2,2,6758,4560,9965,934,4538,1037
301
+ 1,2,444,879,2060,264,290,259
302
+ 2,2,16448,6243,6360,824,2662,2005
303
+ 2,2,5283,13316,20399,1809,8752,172
304
+ 2,2,2886,5302,9785,364,6236,555
305
+ 2,2,2599,3688,13829,492,10069,59
306
+ 2,2,161,7460,24773,617,11783,2410
307
+ 2,2,243,12939,8852,799,3909,211
308
+ 2,2,6468,12867,21570,1840,7558,1543
309
+ 1,2,17327,2374,2842,1149,351,925
310
+ 1,2,6987,1020,3007,416,257,656
311
+ 2,2,918,20655,13567,1465,6846,806
312
+ 1,2,7034,1492,2405,12569,299,1117
313
+ 1,2,29635,2335,8280,3046,371,117
314
+ 2,2,2137,3737,19172,1274,17120,142
315
+ 1,2,9784,925,2405,4447,183,297
316
+ 1,2,10617,1795,7647,1483,857,1233
317
+ 2,2,1479,14982,11924,662,3891,3508
318
+ 1,2,7127,1375,2201,2679,83,1059
319
+ 1,2,1182,3088,6114,978,821,1637
320
+ 1,2,11800,2713,3558,2121,706,51
321
+ 2,2,9759,25071,17645,1128,12408,1625
322
+ 1,2,1774,3696,2280,514,275,834
323
+ 1,2,9155,1897,5167,2714,228,1113
324
+ 1,2,15881,713,3315,3703,1470,229
325
+ 1,2,13360,944,11593,915,1679,573
326
+ 1,2,25977,3587,2464,2369,140,1092
327
+ 1,2,32717,16784,13626,60869,1272,5609
328
+ 1,2,4414,1610,1431,3498,387,834
329
+ 1,2,542,899,1664,414,88,522
330
+ 1,2,16933,2209,3389,7849,210,1534
331
+ 1,2,5113,1486,4583,5127,492,739
332
+ 1,2,9790,1786,5109,3570,182,1043
333
+ 2,2,11223,14881,26839,1234,9606,1102
334
+ 1,2,22321,3216,1447,2208,178,2602
335
+ 2,2,8565,4980,67298,131,38102,1215
336
+ 2,2,16823,928,2743,11559,332,3486
337
+ 2,2,27082,6817,10790,1365,4111,2139
338
+ 1,2,13970,1511,1330,650,146,778
339
+ 1,2,9351,1347,2611,8170,442,868
340
+ 1,2,3,333,7021,15601,15,550
341
+ 1,2,2617,1188,5332,9584,573,1942
342
+ 2,3,381,4025,9670,388,7271,1371
343
+ 2,3,2320,5763,11238,767,5162,2158
344
+ 1,3,255,5758,5923,349,4595,1328
345
+ 2,3,1689,6964,26316,1456,15469,37
346
+ 1,3,3043,1172,1763,2234,217,379
347
+ 1,3,1198,2602,8335,402,3843,303
348
+ 2,3,2771,6939,15541,2693,6600,1115
349
+ 2,3,27380,7184,12311,2809,4621,1022
350
+ 1,3,3428,2380,2028,1341,1184,665
351
+ 2,3,5981,14641,20521,2005,12218,445
352
+ 1,3,3521,1099,1997,1796,173,995
353
+ 2,3,1210,10044,22294,1741,12638,3137
354
+ 1,3,608,1106,1533,830,90,195
355
+ 2,3,117,6264,21203,228,8682,1111
356
+ 1,3,14039,7393,2548,6386,1333,2341
357
+ 1,3,190,727,2012,245,184,127
358
+ 1,3,22686,134,218,3157,9,548
359
+ 2,3,37,1275,22272,137,6747,110
360
+ 1,3,759,18664,1660,6114,536,4100
361
+ 1,3,796,5878,2109,340,232,776
362
+ 1,3,19746,2872,2006,2601,468,503
363
+ 1,3,4734,607,864,1206,159,405
364
+ 1,3,2121,1601,2453,560,179,712
365
+ 1,3,4627,997,4438,191,1335,314
366
+ 1,3,2615,873,1524,1103,514,468
367
+ 2,3,4692,6128,8025,1619,4515,3105
368
+ 1,3,9561,2217,1664,1173,222,447
369
+ 1,3,3477,894,534,1457,252,342
370
+ 1,3,22335,1196,2406,2046,101,558
371
+ 1,3,6211,337,683,1089,41,296
372
+ 2,3,39679,3944,4955,1364,523,2235
373
+ 1,3,20105,1887,1939,8164,716,790
374
+ 1,3,3884,3801,1641,876,397,4829
375
+ 2,3,15076,6257,7398,1504,1916,3113
376
+ 1,3,6338,2256,1668,1492,311,686
377
+ 1,3,5841,1450,1162,597,476,70
378
+ 2,3,3136,8630,13586,5641,4666,1426
379
+ 1,3,38793,3154,2648,1034,96,1242
380
+ 1,3,3225,3294,1902,282,68,1114
381
+ 2,3,4048,5164,10391,130,813,179
382
+ 1,3,28257,944,2146,3881,600,270
383
+ 1,3,17770,4591,1617,9927,246,532
384
+ 1,3,34454,7435,8469,2540,1711,2893
385
+ 1,3,1821,1364,3450,4006,397,361
386
+ 1,3,10683,21858,15400,3635,282,5120
387
+ 1,3,11635,922,1614,2583,192,1068
388
+ 1,3,1206,3620,2857,1945,353,967
389
+ 1,3,20918,1916,1573,1960,231,961
390
+ 1,3,9785,848,1172,1677,200,406
391
+ 1,3,9385,1530,1422,3019,227,684
392
+ 1,3,3352,1181,1328,5502,311,1000
393
+ 1,3,2647,2761,2313,907,95,1827
394
+ 1,3,518,4180,3600,659,122,654
395
+ 1,3,23632,6730,3842,8620,385,819
396
+ 1,3,12377,865,3204,1398,149,452
397
+ 1,3,9602,1316,1263,2921,841,290
398
+ 2,3,4515,11991,9345,2644,3378,2213
399
+ 1,3,11535,1666,1428,6838,64,743
400
+ 1,3,11442,1032,582,5390,74,247
401
+ 1,3,9612,577,935,1601,469,375
402
+ 1,3,4446,906,1238,3576,153,1014
403
+ 1,3,27167,2801,2128,13223,92,1902
404
+ 1,3,26539,4753,5091,220,10,340
405
+ 1,3,25606,11006,4604,127,632,288
406
+ 1,3,18073,4613,3444,4324,914,715
407
+ 1,3,6884,1046,1167,2069,593,378
408
+ 1,3,25066,5010,5026,9806,1092,960
409
+ 2,3,7362,12844,18683,2854,7883,553
410
+ 2,3,8257,3880,6407,1646,2730,344
411
+ 1,3,8708,3634,6100,2349,2123,5137
412
+ 1,3,6633,2096,4563,1389,1860,1892
413
+ 1,3,2126,3289,3281,1535,235,4365
414
+ 1,3,97,3605,12400,98,2970,62
415
+ 1,3,4983,4859,6633,17866,912,2435
416
+ 1,3,5969,1990,3417,5679,1135,290
417
+ 2,3,7842,6046,8552,1691,3540,1874
418
+ 2,3,4389,10940,10908,848,6728,993
419
+ 1,3,5065,5499,11055,364,3485,1063
420
+ 2,3,660,8494,18622,133,6740,776
421
+ 1,3,8861,3783,2223,633,1580,1521
422
+ 1,3,4456,5266,13227,25,6818,1393
423
+ 2,3,17063,4847,9053,1031,3415,1784
424
+ 1,3,26400,1377,4172,830,948,1218
425
+ 2,3,17565,3686,4657,1059,1803,668
426
+ 2,3,16980,2884,12232,874,3213,249
427
+ 1,3,11243,2408,2593,15348,108,1886
428
+ 1,3,13134,9347,14316,3141,5079,1894
429
+ 1,3,31012,16687,5429,15082,439,1163
430
+ 1,3,3047,5970,4910,2198,850,317
431
+ 1,3,8607,1750,3580,47,84,2501
432
+ 1,3,3097,4230,16483,575,241,2080
433
+ 1,3,8533,5506,5160,13486,1377,1498
434
+ 1,3,21117,1162,4754,269,1328,395
435
+ 1,3,1982,3218,1493,1541,356,1449
436
+ 1,3,16731,3922,7994,688,2371,838
437
+ 1,3,29703,12051,16027,13135,182,2204
438
+ 1,3,39228,1431,764,4510,93,2346
439
+ 2,3,14531,15488,30243,437,14841,1867
440
+ 1,3,10290,1981,2232,1038,168,2125
441
+ 1,3,2787,1698,2510,65,477,52