simran0608
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from src.data_preparation import preprocess_data
|
8 |
+
from src.clustering import perform_clustering, plot_clusters
|
9 |
+
from src.feature_selection import select_features_pca, select_features_rfe, select_features_rf
|
10 |
+
import os
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
+
|
13 |
+
def load_data(dataset_choice):
|
14 |
+
if dataset_choice == "Insurance":
|
15 |
+
data = pd.read_sas('a2z_insurance.sas7bdat',encoding='latin1')
|
16 |
+
elif dataset_choice == "Retail":
|
17 |
+
data = pd.read_csv('retaildata.csv', encoding='latin1')
|
18 |
+
elif dataset_choice == "Banking":
|
19 |
+
data = pd.read_csv('bankingdata.csv', encoding='latin1')
|
20 |
+
return data
|
21 |
+
|
22 |
+
return data
|
23 |
+
# Function to summarize cluster characteristics
|
24 |
+
def summarize_cluster_characteristics(clustered_data, labels, cluster_number):
|
25 |
+
cluster_data = clustered_data[labels == cluster_number]
|
26 |
+
summary = cluster_data.mean().to_dict()
|
27 |
+
return summary
|
28 |
+
|
29 |
+
# Function to display Business Understanding section
|
30 |
+
def display_business_understanding():
|
31 |
+
st.subheader("Business Objective")
|
32 |
+
st.write("""
|
33 |
+
###### Customer segmentation is a fundamental task in marketing and customer relationship management. With the advancements in data analytics and machine learning, it is now possible to group customers into distinct segments with a high degree of precision, allowing businesses to tailor their marketing strategies and offerings to each segment's unique needs and preferences.
|
34 |
+
|
35 |
+
###### Through this customer segmentation, businesses can achieve:
|
36 |
+
- **Personalization**: Tailoring marketing strategies to meet the unique needs of each segment.
|
37 |
+
- **Optimization**: Efficient allocation of marketing resources.
|
38 |
+
- **Insight**: Gaining a deeper understanding of the customer base.
|
39 |
+
- **Engagement**: Enhancing customer engagement and satisfaction.
|
40 |
+
|
41 |
+
###### => Problem/Requirement: Utilize machine learning and data analysis techniques in Python to perform customer segmentation.
|
42 |
+
|
43 |
+
""")
|
44 |
+
st.image("Customer-Segmentation.png", caption="Customer Segmentation", use_column_width=True)
|
45 |
+
|
46 |
+
# Function to display Dataset section
|
47 |
+
def display_dataset_selection():
|
48 |
+
dataset_choice = st.selectbox("Select Dataset", ("Insurance", "Retail", "Banking"))
|
49 |
+
data = load_data(dataset_choice)
|
50 |
+
st.write(f"Dataset: {dataset_choice}")
|
51 |
+
st.write("Number of rows:", data.shape[0])
|
52 |
+
st.write("Number of columns:", data.shape[1])
|
53 |
+
st.write("First five rows of the data:")
|
54 |
+
st.write(data.head())
|
55 |
+
return data
|
56 |
+
# Function to display Modeling & Evaluation section
|
57 |
+
def display_modeling_evaluation():
|
58 |
+
dataset_choice = st.selectbox("Select Dataset", ("Insurance", "Retail", "Banking"))
|
59 |
+
data = load_data(dataset_choice)
|
60 |
+
data = preprocess_data(data)
|
61 |
+
|
62 |
+
# Sidebar for feature selection and clustering method
|
63 |
+
st.sidebar.header("Feature Selection and Clustering Method")
|
64 |
+
feature_selection_method = st.sidebar.selectbox("Select feature selection method", ('PCA', 'RFE', 'Random Forest'))
|
65 |
+
n_clusters = st.sidebar.slider("Number of clusters", min_value=2, max_value=10, value=3)
|
66 |
+
|
67 |
+
if feature_selection_method == 'PCA':
|
68 |
+
n_components = st.sidebar.slider("Number of PCA components", min_value=2, max_value=10, value=5)
|
69 |
+
elif feature_selection_method in ['RFE', 'Random Forest']:
|
70 |
+
n_features_to_select = st.sidebar.slider("Number of features to select", min_value=2, max_value=10, value=5)
|
71 |
+
|
72 |
+
# Perform clustering on button click
|
73 |
+
if st.sidebar.button("Cluster"):
|
74 |
+
if feature_selection_method == 'PCA':
|
75 |
+
selected_data, selected_features = select_features_pca(data, n_components)
|
76 |
+
elif feature_selection_method == 'RFE':
|
77 |
+
selected_data, selected_features = select_features_rfe(data, n_features_to_select)
|
78 |
+
elif feature_selection_method == 'Random Forest':
|
79 |
+
selected_data, selected_features = select_features_rf(data, n_features_to_select)
|
80 |
+
|
81 |
+
st.write(f"Selected Features: {selected_features}")
|
82 |
+
clustered_data, score, df_value_scaled, labels, model = perform_clustering(selected_data, n_clusters)
|
83 |
+
st.write(f"Number of Clusters: {n_clusters}")
|
84 |
+
st.write(f"Silhouette Score: {score}")
|
85 |
+
st.write("Clustered Data")
|
86 |
+
st.write(clustered_data)
|
87 |
+
st.write("Cluster Visualization")
|
88 |
+
plot_clusters(df_value_scaled, labels)
|
89 |
+
|
90 |
+
# Store selected features and model in session state
|
91 |
+
st.session_state.selected_features = selected_features
|
92 |
+
st.session_state.model = model
|
93 |
+
st.session_state.clustered_data = clustered_data
|
94 |
+
st.session_state.labels = labels
|
95 |
+
st.session_state.df_value_scaled = df_value_scaled
|
96 |
+
|
97 |
+
# Predict new data based on selected features
|
98 |
+
if 'selected_features' in st.session_state and 'model' in st.session_state:
|
99 |
+
st.write("### Predict Cluster")
|
100 |
+
|
101 |
+
# Use st.form to handle input fields
|
102 |
+
with st.form(key='prediction_form'):
|
103 |
+
user_input = {}
|
104 |
+
for feature in st.session_state.selected_features:
|
105 |
+
user_input[feature] = st.number_input(f'Enter {feature}', value=0.0)
|
106 |
+
|
107 |
+
submit_button = st.form_submit_button(label='Predict')
|
108 |
+
|
109 |
+
if submit_button:
|
110 |
+
user_df = pd.DataFrame(user_input, index=[0])
|
111 |
+
|
112 |
+
scaler = StandardScaler()
|
113 |
+
user_df_scaled = scaler.fit_transform(user_df)
|
114 |
+
|
115 |
+
cluster = st.session_state.model.predict(user_df_scaled)
|
116 |
+
st.write(f'The predicted cluster for the input data is: {cluster[0]}')
|
117 |
+
|
118 |
+
# Get the clustered data and labels from session state
|
119 |
+
clustered_data = st.session_state.clustered_data
|
120 |
+
labels = st.session_state.labels
|
121 |
+
df_value_scaled = st.session_state.df_value_scaled
|
122 |
+
|
123 |
+
# Summarize cluster characteristics
|
124 |
+
summary = summarize_cluster_characteristics(clustered_data, labels, cluster[0])
|
125 |
+
|
126 |
+
# Generate and display the inference
|
127 |
+
inference = f"Based on the input features, the customer belongs to Cluster {cluster[0]}, which is characterized by the following average values:\n"
|
128 |
+
for feature, value in summary.items():
|
129 |
+
inference += f"- {feature}: {value:.2f}\n"
|
130 |
+
st.write(inference)
|
131 |
+
|
132 |
+
plot_clusters(df_value_scaled, labels, new_data_point=user_df_scaled)
|
133 |
+
|
134 |
+
|
135 |
+
# Main app structure
|
136 |
+
def main():
|
137 |
+
st.title("Customer Segmentation Demo")
|
138 |
+
st.header("Customer Segmentation")
|
139 |
+
|
140 |
+
# Sidebar menu options
|
141 |
+
menu = ["Business Understanding", "Dataset", "Modeling & Prediction"]
|
142 |
+
choice = st.sidebar.selectbox('Menu', menu)
|
143 |
+
|
144 |
+
if choice == 'Business Understanding':
|
145 |
+
display_business_understanding()
|
146 |
+
|
147 |
+
elif choice == 'Dataset':
|
148 |
+
display_dataset_selection()
|
149 |
+
|
150 |
+
elif choice == 'Modeling & Prediction':
|
151 |
+
display_modeling_evaluation()
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
main()
|