|
from sklearn.cluster import KMeans
|
|
from sklearn.metrics import silhouette_score
|
|
from sklearn.preprocessing import StandardScaler
|
|
import streamlit as st
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
import pandas as pd
|
|
from sklearn.decomposition import PCA
|
|
|
|
|
|
def perform_clustering(df, n_clusters):
|
|
df = df.dropna()
|
|
|
|
scaler = StandardScaler()
|
|
df_value_scaled = scaler.fit_transform(df)
|
|
|
|
|
|
model = KMeans(n_clusters=n_clusters, random_state=42)
|
|
model.fit(df_value_scaled)
|
|
labels = model.predict(df_value_scaled)
|
|
score = silhouette_score(df_value_scaled, labels)
|
|
|
|
df['Cluster'] = labels
|
|
return df, score, df_value_scaled, labels, model
|
|
|
|
def plot_clusters(df_value_scaled, labels, new_data_point=None):
|
|
pca = PCA(n_components=2)
|
|
components = pca.fit_transform(df_value_scaled)
|
|
df_components = pd.DataFrame(data=components, columns=['PC1', 'PC2'])
|
|
df_components['Cluster'] = labels
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
sns.scatterplot(x='PC1', y='PC2', hue='Cluster', data=df_components, palette='viridis', s=100, alpha=0.7)
|
|
|
|
|
|
if new_data_point is not None:
|
|
plt.scatter(new_data_point[:, 0], new_data_point[:, 1], color='red', marker='o', s=100, label='New Data Point')
|
|
|
|
plt.title('Cluster Visualization')
|
|
plt.xlabel('Principal Component 1')
|
|
plt.ylabel('Principal Component 2')
|
|
plt.legend(title='Cluster')
|
|
st.pyplot(plt)
|
|
|