Chao Xu commited on
Commit
2354839
β€’
1 Parent(s): f7e137f

Update README

Browse files
Files changed (4) hide show
  1. README.md +2 -13
  2. app.py +10 -7
  3. requirements.txt +1 -1
  4. style.css +21 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: πŸ“ΈπŸš€πŸŒŸ
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.40.1
8
  app_file: app.py
9
  pinned: true
10
  license: mit
@@ -21,18 +21,7 @@ license: mit
21
 
22
  This space hosts the demo for [One-2-3-45](http://One-2-3-45.com), powered by the [inference model](https://huggingface.co/One-2-3-45/code).
23
 
24
- Please refer to our [GitHub repo](https://github.com/One-2-3-45/One-2-3-45) for full code release.
25
-
26
- ## Local Deployment of the Demo
27
- ```bash
28
- # Minimum GPU: NVIDIA A10 or RTX 3090
29
- # 1. Install the requirements
30
- sudo apt-get install libsparsehash-dev
31
- pip install -r requirements.txt
32
-
33
- # 2. Run the demo
34
- python app.py
35
- ```
36
 
37
  ## Citation
38
 
 
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 3.41.1
8
  app_file: app.py
9
  pinned: true
10
  license: mit
 
21
 
22
  This space hosts the demo for [One-2-3-45](http://One-2-3-45.com), powered by the [inference model](https://huggingface.co/One-2-3-45/code).
23
 
24
+ Please refer to our [GitHub repo](https://github.com/One-2-3-45/One-2-3-45) for full code release and local deployment of the demo.
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Citation
27
 
app.py CHANGED
@@ -45,7 +45,6 @@ _GPU_INDEX = 0
45
  _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
46
 
47
 
48
- # <a style="display:inline-block; margin-left: 1em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/arXiv-2306.16928-b31b1b.svg"></a>
49
  _DESCRIPTION = '''
50
  <div>
51
  <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
@@ -464,8 +463,6 @@ def run_demo(
464
 
465
  device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
466
  models = init_model(device, os.path.join(code_dir, ckpt))
467
- # model = models['turncam']
468
- # sampler = DDIMSampler(model)
469
 
470
  # init sam model
471
  predictor = sam_init(device_idx)
@@ -559,6 +556,15 @@ def run_demo(
559
  with gr.Row():
560
  regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
561
  regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
 
 
 
 
 
 
 
 
 
562
 
563
  update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
564
 
@@ -603,8 +609,6 @@ def run_demo(
603
 
604
  cam_vis = CameraVisualizer(vis_output)
605
 
606
- gr.Markdown(article)
607
-
608
  # Define the function to be called when any of the btn_retry buttons are clicked
609
  def on_retry_button_click(*btn_retrys):
610
  any_checked = any([btn_retry for btn_retry in btn_retrys])
@@ -648,5 +652,4 @@ def run_demo(
648
 
649
 
650
  if __name__ == '__main__':
651
-
652
- fire.Fire(run_demo)
 
45
  _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
46
 
47
 
 
48
  _DESCRIPTION = '''
49
  <div>
50
  <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
 
463
 
464
  device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
465
  models = init_model(device, os.path.join(code_dir, ckpt))
 
 
466
 
467
  # init sam model
468
  predictor = sam_init(device_idx)
 
556
  with gr.Row():
557
  regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
558
  regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
559
+
560
+ gr.Markdown(article)
561
+ gr.HTML("""
562
+ <div class="footer">
563
+ <p>
564
+ One-2-3-45 Demo by <a style="text-decoration:none" href="https://chaoxu.xyz" target="_blank">Chao Xu</a>
565
+ </p>
566
+ </div>
567
+ """)
568
 
569
  update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
570
 
 
609
 
610
  cam_vis = CameraVisualizer(vis_output)
611
 
 
 
612
  # Define the function to be called when any of the btn_retry buttons are clicked
613
  def on_retry_button_click(*btn_retrys):
614
  any_checked = any([btn_retry for btn_retry in btn_retrys])
 
652
 
653
 
654
  if __name__ == '__main__':
655
+ fire.Fire(run_demo)
 
requirements.txt CHANGED
@@ -17,7 +17,7 @@ kornia>=0.6
17
  webdataset>=0.2.5
18
  torchmetrics>=0.6.0
19
  fire>=0.4.0
20
- gradio>=3.40.1
21
  diffusers>=0.12.1
22
  datasets[vision]>=2.4.0
23
  rich>=13.3.2
 
17
  webdataset>=0.2.5
18
  torchmetrics>=0.6.0
19
  fire>=0.4.0
20
+ gradio>=3.41.1
21
  diffusers>=0.12.1
22
  datasets[vision]>=2.4.0
23
  rich>=13.3.2
style.css CHANGED
@@ -10,4 +10,24 @@
10
  margin-left: auto;
11
  color: #fff;
12
  background: #1565c0;
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  margin-left: auto;
11
  color: #fff;
12
  background: #1565c0;
13
+ }
14
+
15
+ .footer {
16
+ margin-bottom: 45px;
17
+ margin-top: 10px;
18
+ text-align: center;
19
+ border-bottom: 1px solid #e5e5e5;
20
+ }
21
+ .footer>p {
22
+ font-size: .8rem;
23
+ display: inline-block;
24
+ padding: 0 10px;
25
+ transform: translateY(15px);
26
+ background: white;
27
+ }
28
+ .dark .footer {
29
+ border-color: #303030;
30
+ }
31
+ .dark .footer>p {
32
+ background: #0b0f19;
33
+ }