|
import streamlit as st |
|
from transformers import HubertForSequenceClassification, HubertConfig, Wav2Vec2FeatureExtractor |
|
import torch |
|
import soundfile as sf |
|
import gdown |
|
import os |
|
|
|
file_id = "1xm9Uf7_wn3VR2ivuftCW0jkz5bDC0YxF" |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model_name = "model_hubert_finetuned_nopeft.pth" |
|
if not os.path.exists(model_name): |
|
print(f"Downloading {model_name} from Google Drive...") |
|
gdown.download(f'https://drive.google.com/uc?id={file_id}', model_name, quiet=False) |
|
else: |
|
print(f"{output} already exists, skipping download.") |
|
|
|
|
|
config = HubertConfig.from_pretrained("superb/hubert-large-superb-er") |
|
config.id2label = {0: 'neu', 1: 'hap', 2: 'ang', 3: 'sad', 4: 'dis', 5: 'sur', 6: 'fea', 7: 'cal'} |
|
config.label2id = {"neu": 0, "hap": 1, "ang": 2, "sad": 3, "dis": 4, "sur": 5, "fea": 6, "cal": 7} |
|
config.num_labels = 8 |
|
|
|
|
|
model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er", config=config, ignore_mismatched_sizes=True) |
|
model.to(device) |
|
checkpoint =torch.load(model_name, map_location = device) |
|
model.load_state_dict(checkpoint) |
|
|
|
|
|
model.eval() |
|
|
|
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er") |
|
|
|
st.title("Speech Emotion Recognition Model") |
|
|
|
uploaded_file = st.file_uploader("Upload an audio file", type=["wav"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
audio_input, sampling_rate = sf.read(uploaded_file) |
|
|
|
|
|
inputs = feature_extractor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True) |
|
inputs = {key: value.to('cuda' if torch.cuda.is_available() else 'cpu') for key, value in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probabilities = torch.softmax(logits, dim=-1) |
|
predicted_class = torch.argmax(probabilities, dim=1).item() |
|
|
|
|
|
st.write(f"Predicted class: {config.id2label[predicted_class]}") |
|
st.write(f"Class probabilities: {probabilities}") |