import streamlit as st from transformers import HubertForSequenceClassification, HubertConfig, Wav2Vec2FeatureExtractor import torch import soundfile as sf import gdown import os file_id = "1xm9Uf7_wn3VR2ivuftCW0jkz5bDC0YxF" # Load model and tokenizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_name = "model_hubert_finetuned_nopeft.pth" if not os.path.exists(model_name): print(f"Downloading {model_name} from Google Drive...") gdown.download(f'https://drive.google.com/uc?id={file_id}', model_name, quiet=False) else: print(f"{output} already exists, skipping download.") # Replace with your model path or Hugging Face model hub path config = HubertConfig.from_pretrained("superb/hubert-large-superb-er") config.id2label = {0: 'neu', 1: 'hap', 2: 'ang', 3: 'sad', 4: 'dis', 5: 'sur', 6: 'fea', 7: 'cal'} config.label2id = {"neu": 0, "hap": 1, "ang": 2, "sad": 3, "dis": 4, "sur": 5, "fea": 6, "cal": 7} config.num_labels = 8 # Set it to the number of classes in your SER task # Load the pre-trained model with the modified configuration model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er", config=config, ignore_mismatched_sizes=True) model.to(device) checkpoint =torch.load(model_name, map_location = device) model.load_state_dict(checkpoint) model.eval() # Load feature extractor feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er") st.title("Speech Emotion Recognition Model") uploaded_file = st.file_uploader("Upload an audio file", type=["wav"]) if uploaded_file is not None: # Load audio file audio_input, sampling_rate = sf.read(uploaded_file) # Preprocess audio input inputs = feature_extractor(audio_input, sampling_rate=16000, return_tensors="pt", padding=True) inputs = {key: value.to('cuda' if torch.cuda.is_available() else 'cpu') for key, value in inputs.items()} # Get prediction with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=1).item() # Display prediction st.write(f"Predicted class: {config.id2label[predicted_class]}") st.write(f"Class probabilities: {probabilities}")