3d_model / docs /API_MODELS.md
Azan
Clean deployment build (Squashed)
7a87926

API Models Documentation

This document describes the Pydantic models used throughout the YLFF API. All models are rigorously defined with comprehensive validation, documentation, and examples.

Overview

All API request/response models are defined in ylff/api_models.py with:

  • Comprehensive field validation (ranges, types, constraints)
  • Detailed descriptions for all fields
  • Examples for every field and model
  • Type safety with enums where appropriate
  • Custom validators for complex validation logic
  • JSON schema generation support

Model Organization

Models are organized into:

  • Enums: Type-safe enumerations for common values
  • Request Models: Input validation for API endpoints
  • Response Models: Structured response data

Enums

JobStatus

Job execution status values:

  • queued: Job is queued for execution
  • running: Job is currently executing
  • completed: Job completed successfully
  • failed: Job failed
  • cancelled: Job was cancelled

DeviceType

Device type for model inference/training:

  • cpu: CPU execution
  • cuda: CUDA GPU execution
  • mps: Apple Metal Performance Shaders

UseCase

Use case for model selection:

  • ba_validation: Bundle Adjustment validation
  • mono_depth: Monocular depth estimation
  • multi_view: Multi-view depth estimation
  • pose_conditioned: Pose-conditioned depth
  • training: Training use case
  • inference: General inference

Request Models

ValidateSequenceRequest

Request model for sequence validation endpoint.

Fields:

  • sequence_dir (str, required): Directory containing image sequence
  • model_name (str, optional): DA3 model name (default: auto-select)
  • use_case (UseCase): Use case for model selection (default: ba_validation)
  • accept_threshold (float): Accept threshold in degrees (default: 2.0, range: 0-180)
  • reject_threshold (float): Reject threshold in degrees (default: 30.0, range: 0-180)
  • output (str, optional): Output JSON path for results

Validation:

  • reject_threshold must be greater than accept_threshold
  • sequence_dir cannot be empty

Example:

{
  "sequence_dir": "data/sequences/sequence_001",
  "model_name": "depth-anything/DA3-LARGE",
  "use_case": "ba_validation",
  "accept_threshold": 2.0,
  "reject_threshold": 30.0,
  "output": "data/results/validation.json"
}

ValidateARKitRequest

Request model for ARKit validation endpoint.

Fields:

  • arkit_dir (str, required): Directory containing ARKit video and JSON metadata
  • output_dir (str): Output directory (default: "data/arkit_validation")
  • model_name (str, optional): DA3 model name
  • max_frames (int, optional): Maximum frames to process (≥1)
  • frame_interval (int): Extract every Nth frame (default: 1, ≥1)
  • device (DeviceType): Device for DA3 inference (default: cpu)
  • gui (bool): Show real-time GUI visualization (default: False)

Validation:

  • arkit_dir cannot be empty

BuildDatasetRequest

Request model for building training dataset.

Fields:

  • sequences_dir (str, required): Directory containing sequence directories
  • output_dir (str): Output directory (default: "data/training")
  • model_name (str, optional): DA3 model name for validation
  • max_samples (int, optional): Maximum training samples (≥1)
  • accept_threshold (float): Accept threshold in degrees (default: 2.0)
  • reject_threshold (float): Reject threshold in degrees (default: 30.0)
  • use_wandb (bool): Enable W&B logging (default: True)
  • wandb_project (str): W&B project name (default: "ylff")
  • wandb_name (str, optional): W&B run name

Validation:

  • reject_threshold must be greater than accept_threshold

TrainRequest

Request model for model fine-tuning.

Fields:

  • training_data_dir (str, required): Directory containing training samples
  • model_name (str, optional): DA3 model name to fine-tune
  • epochs (int): Number of epochs (default: 10, range: 1-1000)
  • lr (float): Learning rate (default: 1e-5, >0)
  • batch_size (int): Batch size (default: 1, ≥1)
  • checkpoint_dir (str): Checkpoint directory (default: "checkpoints")
  • device (DeviceType): Device for training (default: cuda)
  • use_wandb (bool): Enable W&B logging (default: True)
  • wandb_project (str): W&B project name (default: "ylff")
  • wandb_name (str, optional): W&B run name

PretrainRequest

Request model for model pre-training on ARKit sequences.

Fields:

  • arkit_sequences_dir (str, required): Directory containing ARKit sequence directories
  • model_name (str, optional): DA3 model name to pre-train
  • epochs (int): Number of epochs (default: 10, range: 1-1000)
  • lr (float): Learning rate (default: 1e-4, >0)
  • batch_size (int): Batch size (default: 1, ≥1)
  • checkpoint_dir (str): Checkpoint directory (default: "checkpoints/pretrain")
  • device (DeviceType): Device for training (default: cuda)
  • max_sequences (int, optional): Maximum sequences to process (≥1)
  • max_frames_per_sequence (int, optional): Maximum frames per sequence (≥1)
  • frame_interval (int): Extract every Nth frame (default: 1, ≥1)
  • use_lidar (bool): Use ARKit LiDAR depth as supervision (default: False)
  • use_ba_depth (bool): Use BA depth maps as supervision (default: False)
  • min_ba_quality (float): Minimum BA quality threshold (default: 0.0, range: 0.0-1.0)
  • use_wandb (bool): Enable W&B logging (default: True)
  • wandb_project (str): W&B project name (default: "ylff")
  • wandb_name (str, optional): W&B run name

EvaluateBAAgreementRequest

Request model for BA agreement evaluation.

Fields:

  • test_data_dir (str, required): Directory containing test sequences
  • model_name (str): DA3 model name (default: "depth-anything/DA3-LARGE")
  • checkpoint (str, optional): Path to model checkpoint
  • threshold (float): Agreement threshold in degrees (default: 2.0, range: 0-180)
  • device (DeviceType): Device for inference (default: cuda)
  • use_wandb (bool): Enable W&B logging (default: True)
  • wandb_project (str): W&B project name (default: "ylff")
  • wandb_name (str, optional): W&B run name

VisualizeRequest

Request model for result visualization.

Fields:

  • results_dir (str, required): Directory containing validation results
  • output_dir (str, optional): Output directory for visualizations
  • use_plotly (bool): Use Plotly for interactive plots (default: True)

Response Models

JobResponse

Standard response for job-based endpoints.

Fields:

  • job_id (str, required): Unique job identifier
  • status (JobStatus, required): Current job status
  • message (str, optional): Status message or error description
  • result (dict, optional): Job result data (only when completed/failed)

ValidationStats

Statistics from BA validation.

Fields:

  • total_frames (int): Total frames processed (≥0)
  • accepted (int): Accepted frames count (≥0)
  • rejected_learnable (int): Rejected-learnable frames count (≥0)
  • rejected_outlier (int): Rejected-outlier frames count (≥0)
  • accepted_percentage (float): Percentage accepted (0-100)
  • rejected_learnable_percentage (float): Percentage rejected-learnable (0-100)
  • rejected_outlier_percentage (float): Percentage rejected-outlier (0-100)
  • ba_status (str, optional): BA validation status
  • max_error_deg (float, optional): Maximum rotation error in degrees (≥0)

HealthResponse

Health check response.

Fields:

  • status (str): Health status ("healthy", "degraded", "unhealthy")
  • timestamp (float): Unix timestamp
  • request_id (str): Request ID
  • profiling (dict, optional): Profiling status if available

ModelsResponse

Response for models list endpoint.

Fields:

  • models (dict): Dictionary of available models with metadata
  • recommended (str, optional): Recommended model for requested use case

ErrorResponse

Standard error response.

Fields:

  • error (str): Error type/name
  • message (str): Human-readable error message
  • request_id (str): Request ID for log correlation
  • details (dict, optional): Additional error details
  • endpoint (str, optional): Endpoint where error occurred

Validation Features

Field Validators

  1. Range Validation: Numeric fields have ge (≥), le (≤), gt (>), lt (<) constraints
  2. String Validation: String fields have min_length constraints
  3. Custom Validators:
    • reject_threshold > accept_threshold validation
    • Path format validation
    • Non-empty string validation

Type Safety

  • Enums for status values, device types, and use cases
  • Optional fields clearly marked with Optional[Type]
  • Required fields use ... in Field definition

Examples

All models include model_config with JSON schema examples for:

  • API documentation generation
  • Client SDK generation
  • Testing and validation

Usage

In API Endpoints

from .api_models import ValidateSequenceRequest, JobResponse

@app.post("/api/v1/validate/sequence", response_model=JobResponse)
async def validate_sequence(request: ValidateSequenceRequest):
    # request is automatically validated
    # Invalid requests return 422 with detailed error messages
    ...

Model Validation

Pydantic automatically validates:

  • Type checking
  • Range constraints
  • Custom validators
  • Required fields
  • Enum values

Error Handling

Validation errors are automatically handled by FastAPI and return:

{
  "error": "ValidationError",
  "message": "Invalid request data",
  "details": [
    {
      "field": "reject_threshold",
      "error": "reject_threshold (20.0) must be greater than accept_threshold (30.0)"
    }
  ],
  "request_id": "..."
}

Benefits

  1. Type Safety: Catch errors at request time, not runtime
  2. Documentation: Auto-generated API docs with examples
  3. Validation: Comprehensive input validation before processing
  4. Consistency: Standardized request/response formats
  5. Maintainability: Centralized model definitions
  6. Developer Experience: Clear error messages and examples