from sentence_transformers import SentenceTransformer | |
from messages import keyword_groups, krishna_blessings | |
import joblib | |
import os | |
# Initialize model | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Compute embeddings | |
embeddings_cache = {} | |
for group, keywords in keyword_groups.items(): | |
keyword_texts = keywords + [krishna_blessings.get(k, "") for k in keywords if k in krishna_blessings] | |
embeddings_cache[group] = model.encode(keyword_texts, convert_to_tensor=True) | |
# Save to file | |
joblib.dump(embeddings_cache, 'embeddings_cache.joblib') |