BirthdayM / cache_embeddings.py
ayush2917's picture
Create cache_embeddings.py
751495b verified
raw
history blame contribute delete
552 Bytes
from sentence_transformers import SentenceTransformer
from messages import keyword_groups, krishna_blessings
import joblib
import os
# Initialize model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Compute embeddings
embeddings_cache = {}
for group, keywords in keyword_groups.items():
keyword_texts = keywords + [krishna_blessings.get(k, "") for k in keywords if k in krishna_blessings]
embeddings_cache[group] = model.encode(keyword_texts, convert_to_tensor=True)
# Save to file
joblib.dump(embeddings_cache, 'embeddings_cache.joblib')