from sentence_transformers import SentenceTransformer from messages import keyword_groups, krishna_blessings import joblib import os # Initialize model model = SentenceTransformer('all-MiniLM-L6-v2') # Compute embeddings embeddings_cache = {} for group, keywords in keyword_groups.items(): keyword_texts = keywords + [krishna_blessings.get(k, "") for k in keywords if k in krishna_blessings] embeddings_cache[group] = model.encode(keyword_texts, convert_to_tensor=True) # Save to file joblib.dump(embeddings_cache, 'embeddings_cache.joblib')