|
import requests |
|
import streamlit as st |
|
import os |
|
|
|
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' |
|
API_KEY = os.getenv('API_KEY') |
|
|
|
headers = { |
|
"Authorization": f"Bearer {API_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
def query(payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
st.markdown(response.json()) |
|
return response.json() |
|
|
|
def get_output(prompt): |
|
return query({"inputs": prompt}) |
|
|
|
def main(): |
|
st.title("Medical Transcription Summarizer") |
|
example_input = st.text_input("Enter your example text:") |
|
|
|
if st.button("Summarize with Variation 1"): |
|
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface. {example_input}" |
|
output = get_output(prompt) |
|
st.markdown(f"**Output:** {output}") |
|
|
|
if st.button("Summarize with Variation 2"): |
|
prompt = f"Provide a summary of the medical transcription. Highlight the important entities, features, and relationships to CCDA and FHIR objects. {example_input}" |
|
output = get_output(prompt) |
|
st.markdown(f"**Output:** {output}") |
|
|
|
if __name__ == "__main__": |
|
main() |