Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import glob | |
import os | |
import os.path | |
from sys import exit | |
import shutil | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as rt | |
import PIL | |
import PIL.ImageColor | |
import tqdm | |
from huggingface_hub import hf_hub_download | |
import MIDI | |
from midi_synthesizer import synthesis | |
from midi_tokenizer import MIDITokenizer | |
in_space = os.getenv("SYSTEM") == "spaces" | |
def softmax(x, axis): | |
x_max = np.amax(x, axis=axis, keepdims=True) | |
exp_x_shifted = np.exp(x - x_max) | |
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True) | |
def sample_top_p_k(probs, p, k): | |
probs_idx = np.argsort(-probs, axis=-1) | |
probs_sort = np.take_along_axis(probs, probs_idx, -1) | |
probs_sum = np.cumsum(probs_sort, axis=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
mask = np.zeros(probs_sort.shape[-1]) | |
mask[:k] = 1 | |
probs_sort = probs_sort * mask | |
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True) | |
shape = probs_sort.shape | |
probs_sort_flat = probs_sort.reshape(-1, shape[-1]) | |
probs_idx_flat = probs_idx.reshape(-1, shape[-1]) | |
next_token = np.stack([np.random.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)]) | |
next_token = next_token.reshape(*shape[:-1]) | |
return next_token | |
def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, | |
disable_patch_change=False, disable_control_change=False, disable_channels=None): | |
if disable_channels is not None: | |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] | |
else: | |
disable_channels = [] | |
max_token_seq = tokenizer.max_token_seq | |
if prompt is None: | |
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) | |
input_tensor[0, 0] = tokenizer.bos_id # bos | |
else: | |
prompt = prompt[:, :max_token_seq] | |
if prompt.shape[-1] < max_token_seq: | |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
input_tensor = prompt | |
input_tensor = input_tensor[None, :, :] | |
cur_len = input_tensor.shape[1] | |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) | |
with bar: | |
while cur_len < max_len: | |
end = False | |
hidden = model_base.run(None, {'x': input_tensor})[0][:, -1] | |
next_token_seq = np.empty((1, 0), dtype=np.int64) | |
event_name = "" | |
for i in range(max_token_seq): | |
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) | |
if i == 0: | |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] | |
if disable_patch_change: | |
mask_ids.remove(tokenizer.event_ids["patch_change"]) | |
if disable_control_change: | |
mask_ids.remove(tokenizer.event_ids["control_change"]) | |
mask[mask_ids] = 1 | |
else: | |
param_name = tokenizer.events[event_name][i - 1] | |
mask_ids = tokenizer.parameter_ids[param_name] | |
if param_name == "channel": | |
mask_ids = [i for i in mask_ids if i not in disable_channels] | |
mask[mask_ids] = 1 | |
logits = model_token.run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] | |
scores = softmax(logits / temp, -1) * mask | |
sample = sample_top_p_k(scores, top_p, top_k) | |
if i == 0: | |
next_token_seq = sample | |
eid = sample.item() | |
if eid == tokenizer.eos_id: | |
end = True | |
break | |
event_name = tokenizer.id_events[eid] | |
else: | |
next_token_seq = np.concatenate([next_token_seq, sample], axis=1) | |
if len(tokenizer.events[event_name]) == i: | |
break | |
if next_token_seq.shape[1] < max_token_seq: | |
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
next_token_seq = next_token_seq[None, :, :] | |
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) | |
cur_len += 1 | |
bar.update(1) | |
yield next_token_seq.reshape(-1) | |
if end: | |
break | |
def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc): | |
mid_seq = [] | |
max_len = int(gen_events) | |
img_len = 1024 | |
img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8) | |
state = {"t1": 0, "t": 0, "cur_pos": 0} | |
colors = ['navy', 'blue', 'deepskyblue', 'teal', 'green', 'lightgreen', 'lime', 'orange', | |
'brown', 'grey', 'red', 'pink', 'aqua', 'orchid', 'bisque', 'coral'] | |
colors = [PIL.ImageColor.getrgb(color) for color in colors] | |
def draw_event(tokens): | |
if tokens[0] in tokenizer.id_events: | |
name = tokenizer.id_events[tokens[0]] | |
if len(tokens) <= len(tokenizer.events[name]): | |
return | |
params = tokens[1:] | |
params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])] | |
if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]): | |
return | |
event = [name] + params | |
state["t1"] += event[1] | |
t = state["t1"] * 16 + event[2] | |
state["t"] = t | |
if name == "note": | |
tr, d, c, p = event[3:7] | |
shift = t + d - (state["cur_pos"] + img_len) | |
if shift > 0: | |
img[:, :-shift] = img[:, shift:] | |
img[:, -shift:] = 255 | |
state["cur_pos"] += shift | |
t = t - state["cur_pos"] | |
img[p * 2:(p + 1) * 2, t: t + d] = colors[c] | |
def get_img(): | |
t = state["t"] - state["cur_pos"] | |
img_new = img.copy() | |
img_new[:, t: t + 2] = 0 | |
return PIL.Image.fromarray(np.flip(img_new, 0)) | |
disable_patch_change = False | |
disable_channels = None | |
if tab == 0: | |
i = 0 | |
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] | |
patches = {} | |
for instr in instruments: | |
patches[i] = patch2number[instr] | |
i = (i + 1) if i != 9 else 10 | |
if drum_kit != "None": | |
patches[9] = drum_kits2number[drum_kit] | |
for i, (c, p) in enumerate(patches.items()): | |
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p])) | |
mid_seq = mid | |
mid = np.asarray(mid, dtype=np.int64) | |
if len(instruments) > 0: | |
disable_patch_change = True | |
disable_channels = [i for i in range(16) if i not in patches] | |
elif mid is not None: | |
mid = tokenizer.tokenize(MIDI.midi2score(mid)) | |
mid = np.asarray(mid, dtype=np.int64) | |
mid = mid[:int(midi_events)] | |
max_len += len(mid) | |
for token_seq in mid: | |
mid_seq.append(token_seq) | |
draw_event(token_seq) | |
generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k, | |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc, | |
disable_channels=disable_channels) | |
for token_seq in generator: | |
mid_seq.append(token_seq) | |
draw_event(token_seq) | |
yield mid_seq, get_img(), None, None | |
mid = tokenizer.detokenize(mid_seq) | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid)) | |
audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
yield mid_seq, get_img(), "output.mid", (44100, audio) | |
def cancel_run(mid_seq): | |
if mid_seq is None: | |
return None, None | |
mid = tokenizer.detokenize(mid_seq) | |
with open(f"output.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid)) | |
audio = synthesis(MIDI.score2opus(mid), soundfont_path) | |
return "output.mid", (44100, audio) | |
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", | |
40: "Blush", 48: "Orchestra"} | |
patch2number = {v: k for k, v in MIDI.Number2patch.items()} | |
drum_kits2number = {v: k for k, v in number2drum_kits.items()} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
opt = parser.parse_args() | |
soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2") | |
model_base_path = hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_base.onnx") | |
model_token_path = hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_token.onnx") | |
tokenizer = MIDITokenizer() | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
model_base = rt.InferenceSession(model_base_path, providers=providers) | |
model_token = rt.InferenceSession(model_token_path, providers=providers) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n" | |
"Midi event transformer for music generation\n\n" | |
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)" | |
" for faster running and longer generation" | |
) | |
tab_select = gr.Variable(value=0) | |
with gr.Tabs(): | |
with gr.TabItem("instrument prompt") as tab1: | |
input_instruments = gr.Dropdown(label="instruments (auto if empty)", choices=list(patch2number.keys()), | |
multiselect=True, max_choices=15, type="value") | |
input_drum_kit = gr.Dropdown(label="drum kit", choices=list(drum_kits2number.keys()), type="value", | |
value="None") | |
example1 = gr.Examples([ | |
[[], "None"], | |
[["Acoustic Grand"], "None"], | |
[["Acoustic Grand", "Violin", "Viola", "Cello", "Contrabass", "Timpani"], "Orchestra"], | |
[["Acoustic Guitar(nylon)", "Acoustic Guitar(steel)", "Electric Guitar(jazz)", | |
"Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar", | |
"Electric Bass(finger)"], "Standard"], | |
[["Acoustic Grand", "String Ensemble 1", "Trombone", "Tuba", "Muted Trumpet", "French Horn", "Oboe", | |
"English Horn", "Bassoon", "Clarinet"], "Orchestra"] | |
], [input_instruments, input_drum_kit]) | |
with gr.TabItem("midi prompt") as tab2: | |
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") | |
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512, | |
step=1, | |
value=128) | |
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")], | |
[input_midi, input_midi_events]) | |
tab1.select(lambda: 0, None, tab_select, queue=False) | |
tab2.select(lambda: 1, None, tab_select, queue=False) | |
input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=opt.max_gen, | |
step=1, value=opt.max_gen // 2) | |
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1) | |
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98) | |
input_top_k = gr.Slider(label="top k", minimum=1, maximum=50, step=1, value=20) | |
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True) | |
run_btn = gr.Button("generate", variant="primary") | |
stop_btn = gr.Button("stop and output") | |
output_midi_seq = gr.Variable() | |
output_midi_img = gr.Image(label="output image") | |
output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
output_audio = gr.Audio(label="output audio", format="mp3") | |
run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events, | |
input_gen_events, input_temp, input_top_p, input_top_k, | |
input_allow_cc], | |
[output_midi_seq, output_midi_img, output_midi, output_audio]) | |
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False) | |
app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True) | |