Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -24,10 +24,12 @@ def save_image(img, prompt):
|
|
24 |
unique_name = str(uuid.uuid4()) + ".png"
|
25 |
img.save(unique_name)
|
26 |
|
27 |
-
# save with
|
28 |
filename = f"{prompt}.png"
|
29 |
img.save(filename)
|
30 |
return filename
|
|
|
|
|
31 |
|
32 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
33 |
if randomize_seed:
|
@@ -44,6 +46,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
44 |
USE_TORCH_COMPILE = 0
|
45 |
ENABLE_CPU_OFFLOAD = 0
|
46 |
|
|
|
47 |
if torch.cuda.is_available():
|
48 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
49 |
"fluently/Fluently-XL-v4",
|
@@ -52,10 +55,13 @@ if torch.cuda.is_available():
|
|
52 |
)
|
53 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
54 |
|
|
|
55 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
56 |
pipe.set_adapters("dalle")
|
57 |
|
58 |
pipe.to("cuda")
|
|
|
|
|
59 |
|
60 |
@spaces.GPU(enable_queue=True)
|
61 |
def generate(
|
@@ -65,10 +71,15 @@ def generate(
|
|
65 |
seed: int = 0,
|
66 |
width: int = 1024,
|
67 |
height: int = 1024,
|
|
|
|
|
68 |
guidance_scale: float = 3,
|
|
|
69 |
randomize_seed: bool = False,
|
70 |
progress=gr.Progress(track_tqdm=True),
|
71 |
):
|
|
|
|
|
72 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
73 |
|
74 |
if not use_negative_prompt:
|
@@ -81,25 +92,41 @@ def generate(
|
|
81 |
height=height,
|
82 |
guidance_scale=guidance_scale,
|
83 |
num_inference_steps=20,
|
|
|
84 |
num_images_per_prompt=1,
|
|
|
85 |
cross_attention_kwargs={"scale": 0.65},
|
86 |
output_type="pil",
|
87 |
).images
|
88 |
image_paths = [save_image(img, prompt) for img in images]
|
|
|
|
|
89 |
download_links = [create_download_link(path) for path in image_paths]
|
90 |
|
91 |
print(image_paths)
|
|
|
92 |
return image_paths, seed, download_links
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
examples = [
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
]
|
104 |
|
105 |
css = '''
|
@@ -110,6 +137,16 @@ visibility: hidden
|
|
110 |
}
|
111 |
'''
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
114 |
gr.Markdown(DESCRIPTION)
|
115 |
|
@@ -124,7 +161,6 @@ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
|
124 |
)
|
125 |
run_button = gr.Button("Run", scale=0)
|
126 |
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
127 |
-
gallery = gr.Gallery(label="Gallery", columns=2, rows=2, object_fit="cover", height="auto", show_label=False)
|
128 |
with gr.Accordion("Advanced options", open=False):
|
129 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
130 |
negative_prompt = gr.Text(
|
@@ -183,6 +219,7 @@ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
|
183 |
api_name=False,
|
184 |
)
|
185 |
|
|
|
186 |
gr.on(
|
187 |
triggers=[
|
188 |
prompt.submit,
|
@@ -200,7 +237,7 @@ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
|
200 |
guidance_scale,
|
201 |
randomize_seed,
|
202 |
],
|
203 |
-
outputs=[result, seed
|
204 |
api_name="run",
|
205 |
)
|
206 |
|
|
|
24 |
unique_name = str(uuid.uuid4()) + ".png"
|
25 |
img.save(unique_name)
|
26 |
|
27 |
+
# save with promp to save prompt as image file name
|
28 |
filename = f"{prompt}.png"
|
29 |
img.save(filename)
|
30 |
return filename
|
31 |
+
|
32 |
+
return unique_name
|
33 |
|
34 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
35 |
if randomize_seed:
|
|
|
46 |
USE_TORCH_COMPILE = 0
|
47 |
ENABLE_CPU_OFFLOAD = 0
|
48 |
|
49 |
+
|
50 |
if torch.cuda.is_available():
|
51 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
52 |
"fluently/Fluently-XL-v4",
|
|
|
55 |
)
|
56 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
57 |
|
58 |
+
|
59 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
60 |
pipe.set_adapters("dalle")
|
61 |
|
62 |
pipe.to("cuda")
|
63 |
+
|
64 |
+
|
65 |
|
66 |
@spaces.GPU(enable_queue=True)
|
67 |
def generate(
|
|
|
71 |
seed: int = 0,
|
72 |
width: int = 1024,
|
73 |
height: int = 1024,
|
74 |
+
#width: int = 1920,
|
75 |
+
#height: int = 1080,
|
76 |
guidance_scale: float = 3,
|
77 |
+
#randomize_seed: bool = True,
|
78 |
randomize_seed: bool = False,
|
79 |
progress=gr.Progress(track_tqdm=True),
|
80 |
):
|
81 |
+
|
82 |
+
|
83 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
84 |
|
85 |
if not use_negative_prompt:
|
|
|
92 |
height=height,
|
93 |
guidance_scale=guidance_scale,
|
94 |
num_inference_steps=20,
|
95 |
+
#num_inference_steps=50,
|
96 |
num_images_per_prompt=1,
|
97 |
+
#cross_attention_kwargs={"scale": 2.00},
|
98 |
cross_attention_kwargs={"scale": 0.65},
|
99 |
output_type="pil",
|
100 |
).images
|
101 |
image_paths = [save_image(img, prompt) for img in images]
|
102 |
+
|
103 |
+
#image_paths = [save_image(img) for img in images]
|
104 |
download_links = [create_download_link(path) for path in image_paths]
|
105 |
|
106 |
print(image_paths)
|
107 |
+
#return image_paths, seed
|
108 |
return image_paths, seed, download_links
|
109 |
|
110 |
+
examples_old = [
|
111 |
+
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
|
112 |
+
"a team of surgeons performing a delicate operation using state-of-the-art surgical robots",
|
113 |
+
"a elderly woman smiling while a nurse checks her vital signs using a holographic display",
|
114 |
+
"a child receiving a painless vaccination from a friendly robot nurse in a colorful pediatric clinic",
|
115 |
+
"a group of researchers working in a high-tech laboratory, developing new treatments for rare diseases",
|
116 |
+
"a telemedicine consultation between a doctor and a patient, using virtual reality technology for a immersive experience"
|
117 |
+
]
|
118 |
+
|
119 |
examples = [
|
120 |
+
#"In a sleek, private hospital suite, a recovering patient relaxes in a luxurious bed while a personalized AI assistant monitors their health, adjusts the ambient lighting, and provides entertainment tailored to their preferences.",
|
121 |
+
#"A skilled neurosurgeon leads a team of experts in a groundbreaking brain surgery, utilizing advanced neuronavigation systems and miniaturized robotics to precisely remove a tumor with minimal invasiveness.",
|
122 |
+
"An elderly man engages in a virtual reality physical therapy session, guided by a compassionate AI therapist that adapts the exercises to his abilities and provides encouragement, all from the comfort of his own home.",
|
123 |
+
"In a bright, welcoming dental office, a young patient watches in awe as a dental robot efficiently and painlessly repairs a cavity using a laser system, while the dentist explains the procedure using interactive 3D images.",
|
124 |
+
"A team of biomedical engineers collaborate in a state-of-the-art research facility, designing and testing advanced prosthetic limbs that seamlessly integrate with the patient's nervous system for natural, intuitive control.",
|
125 |
+
"A pregnant woman undergoes a routine check-up, as a gentle robotic ultrasound system captures high-resolution 3D images of her developing baby, while the obstetrician provides reassurance and guidance via a holographic display.",
|
126 |
+
"In a cutting-edge cancer treatment center, a patient undergoes a precision radiation therapy session, where an AI-guided system delivers highly targeted doses to destroy cancer cells while preserving healthy tissue.",
|
127 |
+
"A group of medical students attend a virtual reality lecture, where they can interact with detailed, 3D anatomical models and simulate complex surgical procedures under the guidance of renowned experts from around the world.",
|
128 |
+
"In a remote village, a local healthcare worker uses a portable, AI-powered diagnostic device to quickly and accurately assess a patient's symptoms, while seamlessly connecting with specialists in distant cities for expert advice and treatment planning.",
|
129 |
+
"At an advanced fertility clinic, a couple watches in wonder as an AI-assisted system carefully selects the most viable embryos for implantation, while providing personalized guidance and emotional support throughout the process."
|
130 |
]
|
131 |
|
132 |
css = '''
|
|
|
137 |
}
|
138 |
'''
|
139 |
|
140 |
+
|
141 |
+
#css = '''
|
142 |
+
#.gradio-container{max-width: 560px !important}
|
143 |
+
#h1{text-align:center}
|
144 |
+
#footer {
|
145 |
+
# visibility: hidden
|
146 |
+
#}
|
147 |
+
#'''
|
148 |
+
|
149 |
+
|
150 |
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
151 |
gr.Markdown(DESCRIPTION)
|
152 |
|
|
|
161 |
)
|
162 |
run_button = gr.Button("Run", scale=0)
|
163 |
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
|
|
164 |
with gr.Accordion("Advanced options", open=False):
|
165 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
166 |
negative_prompt = gr.Text(
|
|
|
219 |
api_name=False,
|
220 |
)
|
221 |
|
222 |
+
|
223 |
gr.on(
|
224 |
triggers=[
|
225 |
prompt.submit,
|
|
|
237 |
guidance_scale,
|
238 |
randomize_seed,
|
239 |
],
|
240 |
+
outputs=[result, seed],
|
241 |
api_name="run",
|
242 |
)
|
243 |
|