Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
-
import uuid
|
4 |
import base64
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
-
import spaces
|
9 |
import torch
|
10 |
import glob
|
11 |
from datetime import datetime
|
@@ -13,44 +11,39 @@ import pandas as pd
|
|
13 |
import json
|
14 |
import re
|
15 |
import logging
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
22 |
-
|
23 |
DESCRIPTION = """# 🎨 ArtForge: Community AI Gallery
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
|
28 |
# Global variables
|
29 |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
30 |
-
LIKES_CACHE_FILE = "likes_cache.json"
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
with open(LIKES_CACHE_FILE, 'w') as f:
|
40 |
-
json.dump(cache, f)
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
with open(filename, "rb") as file:
|
46 |
-
encoded_string = base64.b64encode(file.read()).decode('utf-8')
|
47 |
-
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
|
48 |
-
return download_link
|
49 |
|
50 |
def save_image(img, prompt):
|
51 |
-
global image_metadata
|
52 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
53 |
-
safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50]
|
54 |
safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-')
|
55 |
filename = f"{timestamp}_{safe_prompt}.png"
|
56 |
img.save(filename)
|
@@ -60,84 +53,50 @@ def save_image(img, prompt):
|
|
60 |
'Likes': [0],
|
61 |
'Dislikes': [0],
|
62 |
'Hearts': [0],
|
63 |
-
'Created': [datetime.now()]
|
64 |
})
|
65 |
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True, sort=False)
|
66 |
-
|
67 |
-
save_likes_cache(likes_cache)
|
68 |
logger.info(f"Saved new image: {filename}")
|
69 |
return filename
|
70 |
|
71 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
72 |
-
if randomize_seed:
|
73 |
-
seed = random.randint(0, MAX_SEED)
|
74 |
-
return seed
|
75 |
-
|
76 |
def get_image_gallery():
|
77 |
-
|
78 |
-
image_files = image_metadata['Filename'].tolist()
|
79 |
-
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)]
|
80 |
|
81 |
def get_image_caption(filename):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
dislikes = likes_cache[filename]['dislikes']
|
86 |
-
hearts = likes_cache[filename]['hearts']
|
87 |
-
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0]
|
88 |
-
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}"
|
89 |
return filename
|
90 |
|
91 |
def delete_all_images():
|
92 |
-
global image_metadata
|
93 |
for file in image_metadata['Filename']:
|
94 |
if os.path.exists(file):
|
95 |
os.remove(file)
|
96 |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
97 |
-
|
98 |
-
save_likes_cache(likes_cache)
|
99 |
logger.info("All images deleted")
|
100 |
return get_image_gallery(), image_metadata.values.tolist()
|
101 |
|
102 |
def delete_image(filename):
|
103 |
-
global image_metadata
|
104 |
if filename and os.path.exists(filename):
|
105 |
os.remove(filename)
|
106 |
image_metadata = image_metadata[image_metadata['Filename'] != filename]
|
107 |
-
|
108 |
-
del likes_cache[filename]
|
109 |
-
save_likes_cache(likes_cache)
|
110 |
logger.info(f"Deleted image: {filename}")
|
111 |
return get_image_gallery(), image_metadata.values.tolist()
|
112 |
|
113 |
def vote(filename, vote_type):
|
114 |
-
global
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
# Update image_metadata as well
|
120 |
-
if filename in image_metadata['Filename'].values:
|
121 |
-
image_metadata.loc[image_metadata['Filename'] == filename, vote_type] += 1
|
122 |
-
logger.info(f"Updated vote count for {filename}: {likes_cache[filename]}")
|
123 |
else:
|
124 |
-
logger.warning(f"File {filename} not found in
|
125 |
-
return
|
126 |
-
|
127 |
-
def get_random_style():
|
128 |
-
styles = [
|
129 |
-
"Impressionist", "Cubist", "Surrealist", "Abstract Expressionist",
|
130 |
-
"Pop Art", "Minimalist", "Baroque", "Art Nouveau", "Pointillist", "Fauvism"
|
131 |
-
]
|
132 |
-
return random.choice(styles)
|
133 |
-
|
134 |
-
MAX_SEED = np.iinfo(np.int32).max
|
135 |
-
|
136 |
-
if not torch.cuda.is_available():
|
137 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
138 |
-
|
139 |
-
USE_TORCH_COMPILE = 0
|
140 |
-
ENABLE_CPU_OFFLOAD = 0
|
141 |
|
142 |
if torch.cuda.is_available():
|
143 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
@@ -146,30 +105,22 @@ if torch.cuda.is_available():
|
|
146 |
use_safetensors=True,
|
147 |
)
|
148 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
149 |
-
|
150 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
151 |
pipe.set_adapters("dalle")
|
152 |
-
|
153 |
pipe.to("cuda")
|
|
|
|
|
154 |
|
155 |
-
@spaces.GPU(enable_queue=True)
|
156 |
def generate(
|
157 |
-
prompt
|
158 |
-
|
159 |
-
|
160 |
-
seed: int = 0,
|
161 |
-
width: int = 1024,
|
162 |
-
height: int = 1024,
|
163 |
-
guidance_scale: float = 3,
|
164 |
-
randomize_seed: bool = False,
|
165 |
-
progress=gr.Progress(track_tqdm=True),
|
166 |
-
**kwargs # Add this line to accept any additional arguments
|
167 |
):
|
168 |
-
|
169 |
-
|
170 |
if not use_negative_prompt:
|
171 |
negative_prompt = ""
|
172 |
-
|
173 |
images = pipe(
|
174 |
prompt=prompt,
|
175 |
negative_prompt=negative_prompt,
|
@@ -182,29 +133,12 @@ def generate(
|
|
182 |
output_type="pil",
|
183 |
).images
|
184 |
image_paths = [save_image(img, prompt) for img in images]
|
185 |
-
|
186 |
-
|
187 |
-
return image_paths, seed, download_links, get_image_gallery(), image_metadata.values.tolist()
|
188 |
-
|
189 |
-
examples = [
|
190 |
-
f"{get_random_style()} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.",
|
191 |
-
f"{get_random_style()} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.",
|
192 |
-
f"{get_random_style()} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.",
|
193 |
-
f"{get_random_style()} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.",
|
194 |
-
f"{get_random_style()} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.",
|
195 |
-
f"{get_random_style()} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.",
|
196 |
-
f"{get_random_style()} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.",
|
197 |
-
f"{get_random_style()} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.",
|
198 |
-
f"{get_random_style()} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.",
|
199 |
-
f"{get_random_style()} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach."
|
200 |
-
]
|
201 |
|
202 |
css = '''
|
203 |
.gradio-container{max-width: 1024px !important}
|
204 |
h1{text-align:center}
|
205 |
-
footer {
|
206 |
-
visibility: hidden
|
207 |
-
}
|
208 |
'''
|
209 |
|
210 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
@@ -212,153 +146,47 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
212 |
|
213 |
with gr.Tab("Generate Images"):
|
214 |
with gr.Group():
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
show_label=False,
|
219 |
-
max_lines=1,
|
220 |
-
placeholder="Enter your prompt",
|
221 |
-
container=False,
|
222 |
-
)
|
223 |
-
run_button = gr.Button("Run", scale=0)
|
224 |
-
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
225 |
with gr.Accordion("Advanced options", open=False):
|
226 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=
|
227 |
-
negative_prompt = gr.Text(
|
228 |
-
|
229 |
-
lines=4,
|
230 |
-
max_lines=6,
|
231 |
-
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
|
232 |
-
placeholder="Enter a negative prompt",
|
233 |
-
visible=True,
|
234 |
-
)
|
235 |
-
seed = gr.Slider(
|
236 |
-
label="Seed",
|
237 |
-
minimum=0,
|
238 |
-
maximum=MAX_SEED,
|
239 |
-
step=1,
|
240 |
-
value=0,
|
241 |
-
visible=True
|
242 |
-
)
|
243 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
minimum=512,
|
248 |
-
maximum=2048,
|
249 |
-
step=8,
|
250 |
-
value=1920,
|
251 |
-
)
|
252 |
-
height = gr.Slider(
|
253 |
-
label="Height",
|
254 |
-
minimum=512,
|
255 |
-
maximum=2048,
|
256 |
-
step=8,
|
257 |
-
value=1080,
|
258 |
-
)
|
259 |
-
with gr.Row():
|
260 |
-
guidance_scale = gr.Slider(
|
261 |
-
label="Guidance Scale",
|
262 |
-
minimum=0.1,
|
263 |
-
maximum=20.0,
|
264 |
-
step=0.1,
|
265 |
-
value=20.0,
|
266 |
-
)
|
267 |
-
|
268 |
-
gr.Examples(
|
269 |
-
examples=examples,
|
270 |
-
inputs=prompt,
|
271 |
-
outputs=[result, seed],
|
272 |
-
fn=generate,
|
273 |
-
cache_examples=False,
|
274 |
-
)
|
275 |
|
276 |
-
with gr.Tab("Gallery
|
277 |
-
image_gallery = gr.Gallery(label="Generated Images",
|
278 |
-
|
|
|
|
|
|
|
|
|
279 |
with gr.Row():
|
280 |
like_button = gr.Button("👍 Like")
|
281 |
dislike_button = gr.Button("👎 Dislike")
|
282 |
heart_button = gr.Button("❤️ Heart")
|
283 |
-
delete_image_button = gr.Button("🗑️ Delete Selected Image")
|
284 |
-
|
285 |
-
selected_image = gr.State(None)
|
286 |
-
|
287 |
-
with gr.Tab("Metadata and Management"):
|
288 |
-
metadata_df = gr.Dataframe(
|
289 |
-
label="Image Metadata",
|
290 |
-
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
|
291 |
-
interactive=False
|
292 |
-
)
|
293 |
delete_all_button = gr.Button("🗑️ Delete All Images")
|
294 |
|
295 |
-
use_negative_prompt.change(
|
296 |
-
fn=lambda x: gr.update(visible=x),
|
297 |
-
inputs=use_negative_prompt,
|
298 |
-
outputs=negative_prompt,
|
299 |
-
api_name=False,
|
300 |
-
)
|
301 |
-
|
302 |
-
delete_all_button.click(
|
303 |
-
fn=delete_all_images,
|
304 |
-
inputs=[],
|
305 |
-
outputs=[image_gallery, metadata_df],
|
306 |
-
)
|
307 |
-
|
308 |
-
image_gallery.select(
|
309 |
-
fn=lambda evt: evt,
|
310 |
-
inputs=[],
|
311 |
-
outputs=[selected_image],
|
312 |
-
)
|
313 |
|
314 |
-
|
315 |
-
fn=
|
316 |
-
inputs=[
|
317 |
-
outputs=[image_gallery, metadata_df]
|
318 |
-
)
|
319 |
-
|
320 |
-
dislike_button.click(
|
321 |
-
fn=lambda x: vote(x, 'Dislikes') if x else (get_image_gallery(), image_metadata.values.tolist()),
|
322 |
-
inputs=[selected_image],
|
323 |
-
outputs=[image_gallery, metadata_df],
|
324 |
-
)
|
325 |
-
|
326 |
-
heart_button.click(
|
327 |
-
fn=lambda x: vote(x, 'Hearts') if x else (get_image_gallery(), image_metadata.values.tolist()),
|
328 |
-
inputs=[selected_image],
|
329 |
-
outputs=[image_gallery, metadata_df],
|
330 |
-
)
|
331 |
-
|
332 |
-
delete_image_button.click(
|
333 |
-
fn=delete_image,
|
334 |
-
inputs=[selected_image],
|
335 |
-
outputs=[image_gallery, metadata_df],
|
336 |
)
|
337 |
|
338 |
-
|
339 |
-
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
prompt.submit,
|
344 |
-
negative_prompt.submit,
|
345 |
-
run_button.click,
|
346 |
-
],
|
347 |
-
fn=generate,
|
348 |
-
inputs=[
|
349 |
-
prompt,
|
350 |
-
negative_prompt,
|
351 |
-
use_negative_prompt,
|
352 |
-
seed,
|
353 |
-
width,
|
354 |
-
height,
|
355 |
-
guidance_scale,
|
356 |
-
randomize_seed],
|
357 |
-
outputs=[result, seed, gr.HTML(visible=False), image_gallery, metadata_df],
|
358 |
-
api_name="run",
|
359 |
-
)
|
360 |
|
361 |
-
demo.load(fn=
|
362 |
|
363 |
if __name__ == "__main__":
|
364 |
demo.queue(max_size=20).launch(share=True, debug=False)
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import base64
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
|
|
7 |
import torch
|
8 |
import glob
|
9 |
from datetime import datetime
|
|
|
11 |
import json
|
12 |
import re
|
13 |
import logging
|
14 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
15 |
|
16 |
# Set up logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
|
|
|
|
20 |
DESCRIPTION = """# 🎨 ArtForge: Community AI Gallery
|
21 |
+
Create, curate, and compete with AI-generated art. Join our creative multiplayer experience! 🖼️🏆✨"""
|
22 |
|
23 |
+
METADATA_FILE = "image_metadata.json"
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
|
26 |
# Global variables
|
27 |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
|
|
28 |
|
29 |
+
def load_metadata():
|
30 |
+
global image_metadata
|
31 |
+
if os.path.exists(METADATA_FILE):
|
32 |
+
with open(METADATA_FILE, 'r') as f:
|
33 |
+
image_metadata = pd.DataFrame(json.load(f))
|
34 |
+
else:
|
35 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
|
|
|
|
36 |
|
37 |
+
def save_metadata():
|
38 |
+
with open(METADATA_FILE, 'w') as f:
|
39 |
+
json.dump(image_metadata.to_dict('records'), f)
|
40 |
|
41 |
+
load_metadata()
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def save_image(img, prompt):
|
44 |
+
global image_metadata
|
45 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
46 |
+
safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50]
|
47 |
safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-')
|
48 |
filename = f"{timestamp}_{safe_prompt}.png"
|
49 |
img.save(filename)
|
|
|
53 |
'Likes': [0],
|
54 |
'Dislikes': [0],
|
55 |
'Hearts': [0],
|
56 |
+
'Created': [str(datetime.now())]
|
57 |
})
|
58 |
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True, sort=False)
|
59 |
+
save_metadata()
|
|
|
60 |
logger.info(f"Saved new image: {filename}")
|
61 |
return filename
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
def get_image_gallery():
|
64 |
+
return [(file, get_image_caption(file)) for file in image_metadata['Filename'] if os.path.exists(file)]
|
|
|
|
|
65 |
|
66 |
def get_image_caption(filename):
|
67 |
+
if filename in image_metadata['Filename'].values:
|
68 |
+
row = image_metadata[image_metadata['Filename'] == filename].iloc[0]
|
69 |
+
return f"{filename}\nPrompt: {row['Prompt']}\n👍 {row['Likes']} 👎 {row['Dislikes']} ❤️ {row['Hearts']}"
|
|
|
|
|
|
|
|
|
70 |
return filename
|
71 |
|
72 |
def delete_all_images():
|
73 |
+
global image_metadata
|
74 |
for file in image_metadata['Filename']:
|
75 |
if os.path.exists(file):
|
76 |
os.remove(file)
|
77 |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
78 |
+
save_metadata()
|
|
|
79 |
logger.info("All images deleted")
|
80 |
return get_image_gallery(), image_metadata.values.tolist()
|
81 |
|
82 |
def delete_image(filename):
|
83 |
+
global image_metadata
|
84 |
if filename and os.path.exists(filename):
|
85 |
os.remove(filename)
|
86 |
image_metadata = image_metadata[image_metadata['Filename'] != filename]
|
87 |
+
save_metadata()
|
|
|
|
|
88 |
logger.info(f"Deleted image: {filename}")
|
89 |
return get_image_gallery(), image_metadata.values.tolist()
|
90 |
|
91 |
def vote(filename, vote_type):
|
92 |
+
global image_metadata
|
93 |
+
if filename in image_metadata['Filename'].values:
|
94 |
+
image_metadata.loc[image_metadata['Filename'] == filename, vote_type] += 1
|
95 |
+
save_metadata()
|
96 |
+
logger.info(f"Updated {vote_type} count for {filename}")
|
|
|
|
|
|
|
|
|
97 |
else:
|
98 |
+
logger.warning(f"File {filename} not found in metadata")
|
99 |
+
return image_metadata.values.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if torch.cuda.is_available():
|
102 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
105 |
use_safetensors=True,
|
106 |
)
|
107 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
108 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
109 |
pipe.set_adapters("dalle")
|
|
|
110 |
pipe.to("cuda")
|
111 |
+
else:
|
112 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
113 |
|
|
|
114 |
def generate(
|
115 |
+
prompt, negative_prompt="", use_negative_prompt=False,
|
116 |
+
seed=0, width=1024, height=1024, guidance_scale=3, randomize_seed=False,
|
117 |
+
progress=gr.Progress(track_tqdm=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
):
|
119 |
+
if randomize_seed:
|
120 |
+
seed = random.randint(0, MAX_SEED)
|
121 |
if not use_negative_prompt:
|
122 |
negative_prompt = ""
|
123 |
+
|
124 |
images = pipe(
|
125 |
prompt=prompt,
|
126 |
negative_prompt=negative_prompt,
|
|
|
133 |
output_type="pil",
|
134 |
).images
|
135 |
image_paths = [save_image(img, prompt) for img in images]
|
136 |
+
return image_paths, seed, get_image_gallery(), image_metadata.values.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
css = '''
|
139 |
.gradio-container{max-width: 1024px !important}
|
140 |
h1{text-align:center}
|
141 |
+
footer {visibility: hidden}
|
|
|
|
|
142 |
'''
|
143 |
|
144 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
146 |
|
147 |
with gr.Tab("Generate Images"):
|
148 |
with gr.Group():
|
149 |
+
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt")
|
150 |
+
run_button = gr.Button("Generate")
|
151 |
+
result = gr.Gallery(label="Result", columns=1, preview=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Accordion("Advanced options", open=False):
|
153 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
154 |
+
negative_prompt = gr.Text(label="Negative prompt", visible=False)
|
155 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
157 |
+
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
|
158 |
+
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
|
159 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=7.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
with gr.Tab("Gallery"):
|
162 |
+
image_gallery = gr.Gallery(label="Generated Images", columns=4, height="auto")
|
163 |
+
delete_image_button = gr.Button("🗑️ Delete Selected Image")
|
164 |
+
selected_image = gr.State(None)
|
165 |
+
|
166 |
+
with gr.Tab("Metadata and Management"):
|
167 |
+
metadata_df = gr.Dataframe(label="Image Metadata", headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"])
|
168 |
with gr.Row():
|
169 |
like_button = gr.Button("👍 Like")
|
170 |
dislike_button = gr.Button("👎 Dislike")
|
171 |
heart_button = gr.Button("❤️ Heart")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
delete_all_button = gr.Button("🗑️ Delete All Images")
|
173 |
|
174 |
+
use_negative_prompt.change(lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
run_button.click(
|
177 |
+
fn=generate,
|
178 |
+
inputs=[prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed],
|
179 |
+
outputs=[result, seed, image_gallery, metadata_df]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
|
182 |
+
delete_all_button.click(fn=delete_all_images, outputs=[image_gallery, metadata_df])
|
183 |
+
image_gallery.select(fn=lambda evt: evt, outputs=selected_image)
|
184 |
+
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
185 |
|
186 |
+
for button, vote_type in [(like_button, 'Likes'), (dislike_button, 'Dislikes'), (heart_button, 'Hearts')]:
|
187 |
+
button.click(fn=lambda x, vt=vote_type: vote(x, vt) if x else image_metadata.values.tolist(), inputs=[selected_image], outputs=[metadata_df])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
demo.queue(max_size=20).launch(share=True, debug=False)
|