awacke1's picture
Update app.py
121c010 verified
raw
history blame
5.65 kB
# app.py
import os
import random
import uuid
import base64
import numpy as np
from PIL import Image
import torch
import streamlit as st
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = """# DALL•E 3 XL v2 High Fi"""
def create_download_link(filename):
with open(filename, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
return download_link
def save_image(img, prompt):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
# save with prompt to save prompt as image file name
filename = f"{prompt}.png"
img.save(filename)
return filename
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v4",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
pipe.set_adapters("dalle")
pipe.to("cuda")
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img, prompt) for img in images]
download_links = [create_download_link(path) for path in image_paths]
print(image_paths)
return image_paths, seed, download_links
if run_button:
image_paths, seed, download_links = generate(
prompt=prompt,
negative_prompt=negative_prompt,
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
)
for image_path in image_paths:
st.image(image_path, caption=prompt)
for download_link in download_links:
st.markdown(download_link, unsafe_allow_html=True)
st.text(f"Seed: {seed}")
else:
st.warning("CUDA is not available. The demo may not work on CPU.")
examples = [
"a modern hospital room with advanced medical equipment and a patient resting comfortably",
"a team of surgeons performing a delicate operation using state-of-the-art surgical robots",
"a elderly woman smiling while a nurse checks her vital signs using a holographic display",
"a child receiving a painless vaccination from a friendly robot nurse in a colorful pediatric clinic",
"a group of researchers working in a high-tech laboratory, developing new treatments for rare diseases",
"a telemedicine consultation between a doctor and a patient, using virtual reality technology for a immersive experience"
]
#st.set_page_config(page_title="DALL•E 3 XL v2 High Fi", layout="centered")
st.markdown(DESCRIPTION)
with st.form(key="generation_form"):
prompt = st.text_input("Prompt", max_chars=None, placeholder="Enter your prompt")
use_negative_prompt = st.checkbox("Use negative prompt", value=True)
if use_negative_prompt:
negative_prompt = st.text_area(
"Negative prompt",
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
height=100,
)
else:
negative_prompt = ""
col1, col2 = st.columns(2)
with col1:
width = st.slider("Width", min_value=512, max_value=2048, step=8, value=1920)
with col2:
height = st.slider("Height", min_value=512, max_value=2048, step=8, value=1080)
col3, col4 = st.columns(2)
with col3:
guidance_scale = st.slider("Guidance Scale", min_value=0.1, max_value=20.0, step=0.1, value=20.0)
with col4:
randomize_seed = st.checkbox("Randomize seed", value=True)
if not randomize_seed:
seed = st.slider("Seed", min_value=0, max_value=MAX_SEED, step=1, value=0)
else:
seed = 0
run_button = st.form_submit_button("Run")
def set_prompt(example):
prompt.value = example
st.subheader("Examples")
for example in examples:
st.button(example, key=example, on_click=set_prompt, args=(example,))