awacke1's picture
Update app.py
1ebbc73 verified
import streamlit as st
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt
st.set_page_config(
page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK",
page_icon="🌠",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/awacke1",
'About': "https://huggingface.co/awacke1"
}
)
st.markdown('''
1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†.
2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP.
3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘.
''')
# πŸ“₯ Download NLTK data
@st.cache_resource
def download_nltk_data():
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
except LookupError:
with st.spinner('Downloading required NLTK data...'):
nltk.download('punkt')
nltk.download('stopwords')
st.success('NLTK data is ready!')
download_nltk_data()
# πŸ•°οΈ Remove timestamps
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
# πŸ“Š Extract high information words
def extract_high_information_words(text, top_n=10):
try:
words = [word.lower() for word in nltk.word_tokenize(text) if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
return [word for word, _ in FreqDist(filtered_words).most_common(top_n)]
except Exception as e:
st.error(f"Error in extract_high_information_words: {str(e)}")
return []
# πŸ”— Create relationship graph
def create_relationship_graph(words):
graph = Digraph()
for i, word in enumerate(words):
graph.node(str(i), word)
if i > 0:
graph.edge(str(i-1), str(i), label=word)
return graph
# πŸ“ˆ Display relationship graph
def display_relationship_graph(words):
try:
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
except Exception as e:
st.error(f"Error displaying relationship graph: {str(e)}")
# πŸ” Extract context words
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
return [(words[i-1] if i > 0 else None, word, words[i+1] if i < len(words)-1 else None)
for i, word in enumerate(words) if word.lower() in high_information_words]
# πŸ“Š Create context graph
def create_context_graph(context_words):
graph = Digraph()
for i, (before, high, after) in enumerate(context_words):
if before:
graph.node(f'before{i}', before, shape='box')
graph.edge(f'before{i}', f'high{i}', label=before)
graph.node(f'high{i}', high, shape='ellipse')
if after:
graph.node(f'after{i}', after, shape='diamond')
graph.edge(f'high{i}', f'after{i}', label=after)
return graph
# πŸ“ˆ Display context graph
def display_context_graph(context_words):
try:
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
except Exception as e:
st.error(f"Error displaying context graph: {str(e)}")
# πŸ“Š Display context table
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
table += "\n".join(f"| {b if b else ''} | {h} | {a if a else ''} |" for b, h, a in context_words)
st.markdown(table)
# πŸ“ Load example files
def load_example_files():
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
if example_files:
selected_file = st.selectbox("πŸ“„ Select an example file:", example_files)
if st.button(f"πŸ“‚ Load {selected_file}"):
with open(selected_file, 'r', encoding="utf-8") as file:
return file.read()
else:
st.write("No suitable example files found.")
return None
# 🧠 Cluster sentences
def cluster_sentences(sentences, num_clusters):
sentences = [s for s in sentences if len(s) > 10]
num_clusters = min(num_clusters, len(sentences))
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(kmeans.labels_):
similarity = linear_kernel(kmeans.cluster_centers_[label:label+1], X[i:i+1]).flatten()[0]
clustered_sentences[label].append((similarity, sentences[i]))
return [[s for _, s in sorted(cluster, reverse=True)] for cluster in clustered_sentences]
# πŸ’Ύ Get text file download link
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"):
b64 = base64.b64encode(text_to_download.encode()).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
# πŸ“Š Get high info words per cluster
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
return [extract_high_information_words(" ".join(cluster), num_words) for cluster in cluster_sentences]
# πŸ“Š Plot cluster words
def plot_cluster_words(cluster_sentences):
for i, cluster in enumerate(cluster_sentences):
words = re.findall(r'\b[a-z]{4,}\b', " ".join(cluster))
word_freq = FreqDist(words)
top_words = [word for word, _ in word_freq.most_common(20)]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(top_words)
similarity_matrix = cosine_similarity(X.toarray())
G = nx.from_numpy_array(similarity_matrix)
pos = nx.spring_layout(G, k=0.5)
plt.figure(figsize=(8, 6))
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True,
labels={i: word for i, word in enumerate(top_words)},
node_color='skyblue', edge_color='gray')
plt.axis('off')
plt.title(f"Cluster {i+1} Word Arrangement")
st.pyplot(plt)
st.markdown(f"**Cluster {i+1} Details:**")
st.markdown(f"Top Words: {', '.join(top_words)}")
st.markdown(f"Number of Sentences: {len(cluster)}")
st.markdown("---")
# Main code for UI
uploaded_file = st.file_uploader("πŸ“ Choose a .txt file", type=['txt'])
example_text = load_example_files()
if example_text:
file_text = example_text
elif uploaded_file:
file_text = uploaded_file.read().decode("utf-8")
else:
file_text = ""
if file_text:
text_without_timestamps = remove_timestamps(file_text)
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("πŸ“Š Top 10 High Information Words"):
st.write(top_words)
with st.expander("πŸ“ˆ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("πŸ”— Context Graph"):
display_context_graph(context_words)
with st.expander("πŸ“‘ Context Table"):
display_context_table(context_words)
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
num_sentences = len(sentences)
st.write(f"Total Sentences: {num_sentences}")
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
original_text = "\n".join(sentences)
st.text_area("Original Sentences", value=original_text, height=400)
with col2:
st.subheader("Clustered Text")
clusters = ""
clustered_text = ""
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
for i, cluster in enumerate(clustered_sentences):
cluster_text = "\n".join(cluster)
high_info_words = ", ".join(cluster_high_info_words[i])
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
st.text_area("Clusters", value=clusters, height=200)
st.text_area("Clustered Sentences", value=clustered_text, height=200)
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
if set(sentences) == set(clustered_sentences_flat):
st.write("βœ… All sentences are accounted for in the clustered output.")
else:
st.write("❌ Some sentences are missing in the clustered output.")
plot_cluster_words(clustered_sentences)
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")