Transcript-EDA-NLTK / cluster2.app.py
awacke1's picture
Rename app.py to cluster2.app.py
2736a95 verified
raw
history blame
7.41 kB
# Import necessary libraries
import streamlit as st
import re
import nltk
import os
from nltk.corpus import stopwords
from nltk import FreqDist
from graphviz import Digraph
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
# Set page configuration with a title and favicon
st.set_page_config(
page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK",
page_icon="🌠",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
}
)
st.markdown('''πŸ” **Exploratory Data Analysis (EDA)** πŸ“Š: - Dive deep into the sea of data with our EDA feature, unveiling hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. Transform raw data into a treasure trove of information πŸ†.
πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ: - Harness the power of NLTK to process and understand human language πŸ—£οΈ. From tokenization to sentiment analysis, our toolkit is your compass 🧭 in the vast landscape of natural language processing (NLP).
πŸ“Ί **Transcript Analysis** πŸ“ˆ: - Elevate your text analysis with our advanced transcript analysis tools. Whether it's speech recognition πŸŽ™οΈ or thematic extraction 🌐, turn your audiovisual content into actionable insights πŸ”‘.''')
# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
def extract_high_information_words(text, top_n=10):
words = nltk.word_tokenize(text)
words = [word.lower() for word in words if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
freq_dist = FreqDist(filtered_words)
return [word for word, _ in freq_dist.most_common(top_n)]
def create_relationship_graph(words):
graph = Digraph()
for index, word in enumerate(words):
graph.node(str(index), word)
if index > 0:
graph.edge(str(index - 1), str(index), label=str(index))
return graph
def display_relationship_graph(words):
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
context_words = []
for index, word in enumerate(words):
if word.lower() in high_information_words:
before_word = words[index - 1] if index > 0 else None
after_word = words[index + 1] if index < len(words) - 1 else None
context_words.append((before_word, word, after_word))
return context_words
def create_context_graph(context_words):
graph = Digraph()
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
#graph.node(f'before{index}', before_word, shape='box') if before_word else None
if before_word: graph.node(f'before{index}', before_word, shape='box') # else None
graph.node(f'high{index}', high_info_word, shape='ellipse')
#graph.node(f'after{index}', after_word, shape='diamond') if after_word else None
if after_word: graph.node(f'after{index}', after_word, shape='diamond') # else None
if before_word:
graph.edge(f'before{index}', f'high{index}')
if after_word:
graph.edge(f'high{index}', f'after{index}')
return graph
def display_context_graph(context_words):
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
for before, high, after in context_words:
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
st.markdown(table)
def load_example_files():
# Exclude specific files
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
# List all .txt files excluding the ones in excluded_files
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
# Check if there are any files to select from
if example_files:
selected_file = st.selectbox("πŸ“„ Select an example file:", example_files)
if st.button(f"πŸ“‚ Load {selected_file}"):
with open(selected_file, 'r', encoding="utf-8") as file:
return file.read()
else:
st.write("No suitable example files found.")
return None
def cluster_sentences(sentences, num_clusters):
# Filter sentences with length over 10 characters
sentences = [sentence for sentence in sentences if len(sentence) > 10]
# Check if the number of sentences is less than the desired number of clusters
if len(sentences) < num_clusters:
# If so, adjust the number of clusters to match the number of sentences
num_clusters = len(sentences)
# Vectorize the sentences
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
# Perform k-means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
# Get the cluster labels for each sentence
labels = kmeans.labels_
# Group sentences by cluster
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(labels):
clustered_sentences[label].append((i, sentences[i]))
return clustered_sentences
# Main code for UI
uploaded_file = st.file_uploader("πŸ“ Choose a .txt file", type=['txt'])
example_text = load_example_files()
if example_text:
file_text = example_text
elif uploaded_file:
file_text = uploaded_file.read().decode("utf-8")
else:
file_text = ""
if file_text:
text_without_timestamps = remove_timestamps(file_text)
sentences = [sentence.strip() for sentence in text_without_timestamps.split('.') if len(sentence.strip()) > 10]
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("πŸ“Š Top 10 High Information Words"):
st.write(top_words)
with st.expander("πŸ“ˆ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("πŸ”— Context Graph"):
display_context_graph(context_words)
with st.expander("πŸ“‘ Context Table"):
display_context_table(context_words)
# with st.expander("Innovation Outlines"):
# showInnovationOutlines()
with st.expander("πŸ“ Sentence Clustering"):
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
output_text = ""
for i, cluster in enumerate(clustered_sentences):
output_text += f"## 🌟 Cluster {i+1}:\n"
for original_index, sentence in cluster:
output_text += f"- Original Line {original_index+1}: {sentence}\n"
output_text += "\n"
st.markdown(output_text)
st.markdown("https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/Id9kntHFHZf_oFFrEmGh5.png")