Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import streamlit as st | |
import re | |
import nltk | |
import os | |
from nltk.corpus import stopwords | |
from nltk import FreqDist | |
from graphviz import Digraph | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans | |
# Set page configuration with a title and favicon | |
st.set_page_config( | |
page_title="πΊTranscriptπEDAπNLTK", | |
page_icon="π ", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload", | |
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558" | |
} | |
) | |
st.markdown('''π **Exploratory Data Analysis (EDA)** π: - Dive deep into the sea of data with our EDA feature, unveiling hidden patterns π΅οΈββοΈ and insights π§ in your transcripts. Transform raw data into a treasure trove of information π. | |
π **Natural Language Toolkit (NLTK)** π οΈ: - Harness the power of NLTK to process and understand human language π£οΈ. From tokenization to sentiment analysis, our toolkit is your compass π§ in the vast landscape of natural language processing (NLP). | |
πΊ **Transcript Analysis** π: - Elevate your text analysis with our advanced transcript analysis tools. Whether it's speech recognition ποΈ or thematic extraction π, turn your audiovisual content into actionable insights π.''') | |
# Download NLTK resources | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
def remove_timestamps(text): | |
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text) | |
def extract_high_information_words(text, top_n=10): | |
words = nltk.word_tokenize(text) | |
words = [word.lower() for word in words if word.isalpha()] | |
stop_words = set(stopwords.words('english')) | |
filtered_words = [word for word in words if word not in stop_words] | |
freq_dist = FreqDist(filtered_words) | |
return [word for word, _ in freq_dist.most_common(top_n)] | |
def create_relationship_graph(words): | |
graph = Digraph() | |
for index, word in enumerate(words): | |
graph.node(str(index), word) | |
if index > 0: | |
graph.edge(str(index - 1), str(index), label=str(index)) | |
return graph | |
def display_relationship_graph(words): | |
graph = create_relationship_graph(words) | |
st.graphviz_chart(graph) | |
def extract_context_words(text, high_information_words): | |
words = nltk.word_tokenize(text) | |
context_words = [] | |
for index, word in enumerate(words): | |
if word.lower() in high_information_words: | |
before_word = words[index - 1] if index > 0 else None | |
after_word = words[index + 1] if index < len(words) - 1 else None | |
context_words.append((before_word, word, after_word)) | |
return context_words | |
def create_context_graph(context_words): | |
graph = Digraph() | |
for index, (before_word, high_info_word, after_word) in enumerate(context_words): | |
#graph.node(f'before{index}', before_word, shape='box') if before_word else None | |
if before_word: graph.node(f'before{index}', before_word, shape='box') # else None | |
graph.node(f'high{index}', high_info_word, shape='ellipse') | |
#graph.node(f'after{index}', after_word, shape='diamond') if after_word else None | |
if after_word: graph.node(f'after{index}', after_word, shape='diamond') # else None | |
if before_word: | |
graph.edge(f'before{index}', f'high{index}') | |
if after_word: | |
graph.edge(f'high{index}', f'after{index}') | |
return graph | |
def display_context_graph(context_words): | |
graph = create_context_graph(context_words) | |
st.graphviz_chart(graph) | |
def display_context_table(context_words): | |
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n" | |
for before, high, after in context_words: | |
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n" | |
st.markdown(table) | |
def load_example_files(): | |
# Exclude specific files | |
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'} | |
# List all .txt files excluding the ones in excluded_files | |
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files] | |
# Check if there are any files to select from | |
if example_files: | |
selected_file = st.selectbox("π Select an example file:", example_files) | |
if st.button(f"π Load {selected_file}"): | |
with open(selected_file, 'r', encoding="utf-8") as file: | |
return file.read() | |
else: | |
st.write("No suitable example files found.") | |
return None | |
def cluster_sentences(sentences, num_clusters): | |
# Filter sentences with length over 10 characters | |
sentences = [sentence for sentence in sentences if len(sentence) > 10] | |
# Check if the number of sentences is less than the desired number of clusters | |
if len(sentences) < num_clusters: | |
# If so, adjust the number of clusters to match the number of sentences | |
num_clusters = len(sentences) | |
# Vectorize the sentences | |
vectorizer = TfidfVectorizer() | |
X = vectorizer.fit_transform(sentences) | |
# Perform k-means clustering | |
kmeans = KMeans(n_clusters=num_clusters, random_state=42) | |
kmeans.fit(X) | |
# Get the cluster labels for each sentence | |
labels = kmeans.labels_ | |
# Group sentences by cluster | |
clustered_sentences = [[] for _ in range(num_clusters)] | |
for i, label in enumerate(labels): | |
clustered_sentences[label].append((i, sentences[i])) | |
return clustered_sentences | |
# Main code for UI | |
uploaded_file = st.file_uploader("π Choose a .txt file", type=['txt']) | |
example_text = load_example_files() | |
if example_text: | |
file_text = example_text | |
elif uploaded_file: | |
file_text = uploaded_file.read().decode("utf-8") | |
else: | |
file_text = "" | |
if file_text: | |
text_without_timestamps = remove_timestamps(file_text) | |
sentences = [sentence.strip() for sentence in text_without_timestamps.split('.') if len(sentence.strip()) > 10] | |
top_words = extract_high_information_words(text_without_timestamps, 10) | |
with st.expander("π Top 10 High Information Words"): | |
st.write(top_words) | |
with st.expander("π Relationship Graph"): | |
display_relationship_graph(top_words) | |
context_words = extract_context_words(text_without_timestamps, top_words) | |
with st.expander("π Context Graph"): | |
display_context_graph(context_words) | |
with st.expander("π Context Table"): | |
display_context_table(context_words) | |
# with st.expander("Innovation Outlines"): | |
# showInnovationOutlines() | |
with st.expander("π Sentence Clustering"): | |
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5) | |
clustered_sentences = cluster_sentences(sentences, num_clusters) | |
output_text = "" | |
for i, cluster in enumerate(clustered_sentences): | |
output_text += f"## π Cluster {i+1}:\n" | |
for original_index, sentence in cluster: | |
output_text += f"- Original Line {original_index+1}: {sentence}\n" | |
output_text += "\n" | |
st.markdown(output_text) | |
st.markdown("https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/Id9kntHFHZf_oFFrEmGh5.png") | |