Spaces:
Sleeping
Sleeping
import streamlit as st | |
import re | |
import nltk | |
import os | |
from nltk.corpus import stopwords | |
from nltk import FreqDist | |
from graphviz import Digraph | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
def remove_timestamps(text): | |
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text) | |
def extract_high_information_words(text, top_n=10): | |
words = nltk.word_tokenize(text) | |
words = [word.lower() for word in words if word.isalpha()] | |
stop_words = set(stopwords.words('english')) | |
filtered_words = [word for word in words if word not in stop_words] | |
freq_dist = FreqDist(filtered_words) | |
return [word for word, _ in freq_dist.most_common(top_n)] | |
def create_relationship_graph(words): | |
graph = Digraph() | |
for index, word in enumerate(words): | |
graph.node(str(index), word) | |
if index > 0: | |
graph.edge(str(index - 1), str(index), label=str(index)) | |
return graph | |
def display_relationship_graph(words): | |
graph = create_relationship_graph(words) | |
st.graphviz_chart(graph) | |
def extract_context_words(text, high_information_words): | |
words = nltk.word_tokenize(text) | |
context_words = [] | |
for index, word in enumerate(words): | |
if word.lower() in high_information_words: | |
before_word = words[index - 1] if index > 0 else None | |
after_word = words[index + 1] if index < len(words) - 1 else None | |
context_words.append((before_word, word, after_word)) | |
return context_words | |
def create_context_graph(context_words): | |
graph = Digraph() | |
for index, (before_word, high_info_word, after_word) in enumerate(context_words): | |
graph.node(f'before{index}', before_word, shape='box') if before_word else None | |
graph.node(f'high{index}', high_info_word, shape='ellipse') | |
graph.node(f'after{index}', after_word, shape='diamond') if after_word else None | |
if before_word: | |
graph.edge(f'before{index}', f'high{index}') | |
if after_word: | |
graph.edge(f'high{index}', f'after{index}') | |
return graph | |
def display_context_graph(context_words): | |
graph = create_context_graph(context_words) | |
st.graphviz_chart(graph) | |
def display_context_table(context_words): | |
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n" | |
for before, high, after in context_words: | |
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n" | |
st.markdown(table) | |
def load_example_files(): | |
example_files = [f for f in os.listdir() if f.endswith('.txt')] | |
selected_file = st.selectbox("Select an example file:", example_files) | |
if st.button(f"Load {selected_file}"): | |
with open(selected_file, 'r', encoding="utf-8") as file: | |
return file.read() | |
return None | |
uploaded_file = st.file_uploader("Choose a .txt file", type=['txt']) | |
example_text = load_example_files() | |
if example_text: | |
file_text = example_text | |
elif uploaded_file: | |
file_text = uploaded_file.read().decode("utf-8") | |
else: | |
file_text = "" | |
if file_text: | |
text_without_timestamps = remove_timestamps(file_text) | |
top_words = extract_high_information_words(text_without_timestamps, 10) | |
st.markdown("**Top 10 High Information Words:**") | |
st.write(top_words) | |
st.markdown("**Relationship Graph:**") | |
display_relationship_graph(top_words) | |
context_words = extract_context_words(text_without_timestamps, top_words) | |
st.markdown("**Context Graph:**") | |
display_context_graph(context_words) | |
st.markdown("**Context Table:**") | |
display_context_table(context_words) | |