Transcript-EDA-NLTK / backup.03202024-1.app.py
awacke1's picture
Rename app.py to backup.03202024-1.app.py
c48df87 verified
raw
history blame
9.42 kB
# Import necessary libraries
import streamlit as st
# scikit learn : https://scikit-learn.org/stable/
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel
# nltk https://www.nltk.org/
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
# Set page configuration with a title and favicon
st.set_page_config(
page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK",
page_icon="🌠",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
}
)
st.markdown('''
1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†.
2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP.
3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘.
''')
# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
def extract_high_information_words(text, top_n=10):
words = nltk.word_tokenize(text)
words = [word.lower() for word in words if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
freq_dist = FreqDist(filtered_words)
return [word for word, _ in freq_dist.most_common(top_n)]
def create_relationship_graph(words):
graph = Digraph()
for index, word in enumerate(words):
graph.node(str(index), word)
if index > 0:
graph.edge(str(index - 1), str(index), label=str(index))
return graph
def display_relationship_graph(words):
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
context_words = []
for index, word in enumerate(words):
if word.lower() in high_information_words:
before_word = words[index - 1] if index > 0 else None
after_word = words[index + 1] if index < len(words) - 1 else None
context_words.append((before_word, word, after_word))
return context_words
def create_context_graph(context_words):
graph = Digraph()
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
if before_word:
graph.node(f'before{index}', before_word, shape='box')
graph.node(f'high{index}', high_info_word, shape='ellipse')
if after_word:
graph.node(f'after{index}', after_word, shape='diamond')
if before_word:
graph.edge(f'before{index}', f'high{index}')
if after_word:
graph.edge(f'high{index}', f'after{index}')
return graph
def display_context_graph(context_words):
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
for before, high, after in context_words:
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
st.markdown(table)
def load_example_files():
# Exclude specific files
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
# List all .txt files excluding the ones in excluded_files
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
# Check if there are any files to select from
if example_files:
selected_file = st.selectbox("πŸ“„ Select an example file:", example_files)
if st.button(f"πŸ“‚ Load {selected_file}"):
with open(selected_file, 'r', encoding="utf-8") as file:
return file.read()
else:
st.write("No suitable example files found.")
return None
def cluster_sentences(sentences, num_clusters):
# Filter sentences with length over 10 characters
sentences = [sentence for sentence in sentences if len(sentence) > 10]
# Check if the number of sentences is less than the desired number of clusters
if len(sentences) < num_clusters:
# If so, adjust the number of clusters to match the number of sentences
num_clusters = len(sentences)
# Vectorize the sentences
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
# Perform k-means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
# Calculate the centroid of each cluster
cluster_centers = kmeans.cluster_centers_
# Group sentences by cluster and calculate similarity to centroid
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(kmeans.labels_):
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
clustered_sentences[label].append((similarity, sentences[i]))
# Order sentences within each cluster based on their similarity to the centroid
for cluster in clustered_sentences:
cluster.sort(reverse=True) # Sort based on similarity (descending order)
# Return the ordered clustered sentences without similarity scores for display
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]
# Function to convert text to a downloadable file
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"):
buffer = BytesIO()
buffer.write(text_to_download.encode())
buffer.seek(0)
b64 = base64.b64encode(buffer.read()).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
return href
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
cluster_high_info_words = []
for cluster in cluster_sentences:
cluster_text = " ".join(cluster)
high_info_words = extract_high_information_words(cluster_text, num_words)
cluster_high_info_words.append(high_info_words)
return cluster_high_info_words
# Main code for UI
uploaded_file = st.file_uploader("πŸ“ Choose a .txt file", type=['txt'])
example_text = load_example_files()
if example_text:
file_text = example_text
elif uploaded_file:
file_text = uploaded_file.read().decode("utf-8")
else:
file_text = ""
if file_text:
text_without_timestamps = remove_timestamps(file_text)
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("πŸ“Š Top 10 High Information Words"):
st.write(top_words)
with st.expander("πŸ“ˆ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("πŸ”— Context Graph"):
display_context_graph(context_words)
with st.expander("πŸ“‘ Context Table"):
display_context_table(context_words)
with st.expander("πŸ“ Sentence Clustering", expanded=True):
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
num_sentences = len(sentences)
st.write(f"Total Sentences: {num_sentences}")
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
original_text = "\n".join(sentences)
st.text_area("Original Sentences", value=original_text, height=400)
with col2:
st.subheader("Clustered Text")
clusters = ""
clustered_text = ""
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
for i, cluster in enumerate(clustered_sentences):
cluster_text = "\n".join(cluster)
high_info_words = ", ".join(cluster_high_info_words[i])
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
st.text_area("Clusters", value=clusters, height=200)
st.text_area("Clustered Sentences", value=clustered_text, height=200)
# Verify that all sentences are accounted for in the clustered output
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
if set(sentences) == set(clustered_sentences_flat):
st.write("βœ… All sentences are accounted for in the clustered output.")
else:
st.write("❌ Some sentences are missing in the clustered output.")
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")