Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import streamlit as st | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans | |
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk import FreqDist | |
import re | |
import os | |
import base64 | |
from graphviz import Digraph | |
from io import BytesIO | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
# Set page configuration with a title and favicon | |
st.set_page_config( | |
page_title="πΊTranscriptπEDAπNLTK", | |
page_icon="π ", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload", | |
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558" | |
} | |
) | |
st.markdown(''' | |
1. π **Transcript Insights Using Exploratory Data Analysis (EDA)** π - Unveil hidden patterns π΅οΈββοΈ and insights π§ in your transcripts. π. | |
2. π **Natural Language Toolkit (NLTK)** π οΈ:- your compass π§ in the vast landscape of NLP. | |
3. πΊ **Transcript Analysis** π:Speech recognition ποΈ and thematic extraction π, audiovisual content to actionable insights π. | |
''') | |
# Download NLTK resources | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
def remove_timestamps(text): | |
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text) | |
def extract_high_information_words(text, top_n=10): | |
words = nltk.word_tokenize(text) | |
words = [word.lower() for word in words if word.isalpha()] | |
stop_words = set(stopwords.words('english')) | |
filtered_words = [word for word in words if word not in stop_words] | |
freq_dist = FreqDist(filtered_words) | |
return [word for word, _ in freq_dist.most_common(top_n)] | |
def create_relationship_graph(words): | |
graph = Digraph() | |
for index, word in enumerate(words): | |
graph.node(str(index), word) | |
if index > 0: | |
graph.edge(str(index - 1), str(index), label=str(index)) | |
return graph | |
def display_relationship_graph(words): | |
graph = create_relationship_graph(words) | |
st.graphviz_chart(graph) | |
def extract_context_words(text, high_information_words): | |
words = nltk.word_tokenize(text) | |
context_words = [] | |
for index, word in enumerate(words): | |
if word.lower() in high_information_words: | |
before_word = words[index - 1] if index > 0 else None | |
after_word = words[index + 1] if index < len(words) - 1 else None | |
context_words.append((before_word, word, after_word)) | |
return context_words | |
def create_context_graph(context_words): | |
graph = Digraph() | |
for index, (before_word, high_info_word, after_word) in enumerate(context_words): | |
if before_word: | |
graph.node(f'before{index}', before_word, shape='box') | |
graph.node(f'high{index}', high_info_word, shape='ellipse') | |
if after_word: | |
graph.node(f'after{index}', after_word, shape='diamond') | |
if before_word: | |
graph.edge(f'before{index}', f'high{index}') | |
if after_word: | |
graph.edge(f'high{index}', f'after{index}') | |
return graph | |
def display_context_graph(context_words): | |
graph = create_context_graph(context_words) | |
st.graphviz_chart(graph) | |
def display_context_table(context_words): | |
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n" | |
for before, high, after in context_words: | |
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n" | |
st.markdown(table) | |
def load_example_files(): | |
# Exclude specific files | |
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'} | |
# List all .txt files excluding the ones in excluded_files | |
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files] | |
# Check if there are any files to select from | |
if example_files: | |
selected_file = st.selectbox("π Select an example file:", example_files) | |
if st.button(f"π Load {selected_file}"): | |
with open(selected_file, 'r', encoding="utf-8") as file: | |
return file.read() | |
else: | |
st.write("No suitable example files found.") | |
return None | |
def cluster_sentences(sentences, num_clusters): | |
# Filter sentences with length over 10 characters | |
sentences = [sentence for sentence in sentences if len(sentence) > 10] | |
# Check if the number of sentences is less than the desired number of clusters | |
if len(sentences) < num_clusters: | |
# If so, adjust the number of clusters to match the number of sentences | |
num_clusters = len(sentences) | |
# Vectorize the sentences | |
vectorizer = TfidfVectorizer() | |
X = vectorizer.fit_transform(sentences) | |
# Perform k-means clustering | |
kmeans = KMeans(n_clusters=num_clusters, random_state=42) | |
kmeans.fit(X) | |
# Calculate the centroid of each cluster | |
cluster_centers = kmeans.cluster_centers_ | |
# Group sentences by cluster and calculate similarity to centroid | |
clustered_sentences = [[] for _ in range(num_clusters)] | |
for i, label in enumerate(kmeans.labels_): | |
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0] | |
clustered_sentences[label].append((similarity, sentences[i])) | |
# Order sentences within each cluster based on their similarity to the centroid | |
for cluster in clustered_sentences: | |
cluster.sort(reverse=True) # Sort based on similarity (descending order) | |
# Return the ordered clustered sentences without similarity scores for display | |
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences] | |
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πΎ Save"): | |
buffer = BytesIO() | |
buffer.write(text_to_download.encode()) | |
buffer.seek(0) | |
b64 = base64.b64encode(buffer.read()).decode() | |
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>' | |
return href | |
def get_high_info_words_per_cluster(cluster_sentences, num_words=5): | |
cluster_high_info_words = [] | |
for cluster in cluster_sentences: | |
cluster_text = " ".join(cluster) | |
high_info_words = extract_high_information_words(cluster_text, num_words) | |
cluster_high_info_words.append(high_info_words) | |
return cluster_high_info_words | |
def plot_cluster_words(cluster_sentences): | |
for i, cluster in enumerate(cluster_sentences): | |
cluster_text = " ".join(cluster) | |
words = re.findall(r'\b[a-z]{4,}\b', cluster_text) | |
word_freq = FreqDist(words) | |
top_words = [word for word, _ in word_freq.most_common(20)] | |
vectorizer = TfidfVectorizer() | |
X = vectorizer.fit_transform(top_words) | |
word_vectors = X.toarray() | |
similarity_matrix = cosine_similarity(word_vectors) | |
G = nx.from_numpy_array(similarity_matrix) | |
pos = nx.spring_layout(G, k=0.5) | |
plt.figure(figsize=(8, 6)) | |
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, node_color='skyblue', edge_color='gray') | |
plt.axis('off') | |
plt.title(f"Cluster {i+1} Word Arrangement") | |
st.pyplot(plt) | |
st.markdown(f"**Cluster {i+1} Details:**") | |
st.markdown(f"Top Words: {', '.join(top_words)}") | |
st.markdown(f"Number of Sentences: {len(cluster)}") | |
st.markdown("---") | |
# Main code for UI | |
uploaded_file = st.file_uploader("π Choose a .txt file", type=['txt']) | |
example_text = load_example_files() | |
if example_text: | |
file_text = example_text | |
elif uploaded_file: | |
file_text = uploaded_file.read().decode("utf-8") | |
else: | |
file_text = "" | |
if file_text: | |
text_without_timestamps = remove_timestamps(file_text) | |
top_words = extract_high_information_words(text_without_timestamps, 10) | |
with st.expander("π Top 10 High Information Words"): | |
st.write(top_words) | |
with st.expander("π Relationship Graph"): | |
display_relationship_graph(top_words) | |
context_words = extract_context_words(text_without_timestamps, top_words) | |
with st.expander("π Context Graph"): | |
display_context_graph(context_words) | |
with st.expander("π Context Table"): | |
display_context_table(context_words) | |
with st.expander("π Sentence Clustering", expanded=True): | |
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10] | |
num_sentences = len(sentences) | |
st.write(f"Total Sentences: {num_sentences}") | |
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5) | |
clustered_sentences = cluster_sentences(sentences, num_clusters) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Original Text") | |
original_text = "\n".join(sentences) | |
st.text_area("Original Sentences", value=original_text, height=400) | |
with col2: | |
st.subheader("Clustered Text") | |
clusters = "" | |
clustered_text = "" | |
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences) | |
for i, cluster in enumerate(clustered_sentences): | |
cluster_text = "\n".join(cluster) | |
high_info_words = ", ".join(cluster_high_info_words[i]) | |
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n" | |
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n" | |
st.text_area("Clusters", value=clusters, height=200) | |
st.text_area("Clustered Sentences", value=clustered_text, height=200) | |
# Verify that all sentences are accounted for in the clustered output | |
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster] | |
if set(sentences) == set(clustered_sentences_flat): | |
st.write("β All sentences are accounted for in the clustered output.") | |
else: | |
st.write("β Some sentences are missing in the clustered output.") | |
plot_cluster_words(clustered_sentences) | |
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).") |