awacke1's picture
Create app.py
c91ce8d verified
raw
history blame
10.5 kB
# Import necessary libraries
import streamlit as st
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
import nltk
from nltk.corpus import stopwords
from nltk import FreqDist
import re
import os
import base64
from graphviz import Digraph
from io import BytesIO
import networkx as nx
import matplotlib.pyplot as plt
# Set page configuration with a title and favicon
st.set_page_config(
page_title="πŸ“ΊTranscriptπŸ“œEDAπŸ”NLTK",
page_icon="🌠",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558"
}
)
st.markdown('''
1. πŸ” **Transcript Insights Using Exploratory Data Analysis (EDA)** πŸ“Š - Unveil hidden patterns πŸ•΅οΈβ€β™‚οΈ and insights 🧠 in your transcripts. πŸ†.
2. πŸ“œ **Natural Language Toolkit (NLTK)** πŸ› οΈ:- your compass 🧭 in the vast landscape of NLP.
3. πŸ“Ί **Transcript Analysis** πŸ“ˆ:Speech recognition πŸŽ™οΈ and thematic extraction 🌐, audiovisual content to actionable insights πŸ”‘.
''')
# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')
def remove_timestamps(text):
return re.sub(r'\d{1,2}:\d{2}\n.*\n', '', text)
def extract_high_information_words(text, top_n=10):
words = nltk.word_tokenize(text)
words = [word.lower() for word in words if word.isalpha()]
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
freq_dist = FreqDist(filtered_words)
return [word for word, _ in freq_dist.most_common(top_n)]
def create_relationship_graph(words):
graph = Digraph()
for index, word in enumerate(words):
graph.node(str(index), word)
if index > 0:
graph.edge(str(index - 1), str(index), label=str(index))
return graph
def display_relationship_graph(words):
graph = create_relationship_graph(words)
st.graphviz_chart(graph)
def extract_context_words(text, high_information_words):
words = nltk.word_tokenize(text)
context_words = []
for index, word in enumerate(words):
if word.lower() in high_information_words:
before_word = words[index - 1] if index > 0 else None
after_word = words[index + 1] if index < len(words) - 1 else None
context_words.append((before_word, word, after_word))
return context_words
def create_context_graph(context_words):
graph = Digraph()
for index, (before_word, high_info_word, after_word) in enumerate(context_words):
if before_word:
graph.node(f'before{index}', before_word, shape='box')
graph.node(f'high{index}', high_info_word, shape='ellipse')
if after_word:
graph.node(f'after{index}', after_word, shape='diamond')
if before_word:
graph.edge(f'before{index}', f'high{index}')
if after_word:
graph.edge(f'high{index}', f'after{index}')
return graph
def display_context_graph(context_words):
graph = create_context_graph(context_words)
st.graphviz_chart(graph)
def display_context_table(context_words):
table = "| Before | High Info Word | After |\n|--------|----------------|-------|\n"
for before, high, after in context_words:
table += f"| {before if before else ''} | {high} | {after if after else ''} |\n"
st.markdown(table)
def load_example_files():
# Exclude specific files
excluded_files = {'freeze.txt', 'requirements.txt', 'packages.txt', 'pre-requirements.txt'}
# List all .txt files excluding the ones in excluded_files
example_files = [f for f in os.listdir() if f.endswith('.txt') and f not in excluded_files]
# Check if there are any files to select from
if example_files:
selected_file = st.selectbox("πŸ“„ Select an example file:", example_files)
if st.button(f"πŸ“‚ Load {selected_file}"):
with open(selected_file, 'r', encoding="utf-8") as file:
return file.read()
else:
st.write("No suitable example files found.")
return None
def cluster_sentences(sentences, num_clusters):
# Filter sentences with length over 10 characters
sentences = [sentence for sentence in sentences if len(sentence) > 10]
# Check if the number of sentences is less than the desired number of clusters
if len(sentences) < num_clusters:
# If so, adjust the number of clusters to match the number of sentences
num_clusters = len(sentences)
# Vectorize the sentences
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(sentences)
# Perform k-means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
# Calculate the centroid of each cluster
cluster_centers = kmeans.cluster_centers_
# Group sentences by cluster and calculate similarity to centroid
clustered_sentences = [[] for _ in range(num_clusters)]
for i, label in enumerate(kmeans.labels_):
similarity = linear_kernel(cluster_centers[label:label+1], X[i:i+1]).flatten()[0]
clustered_sentences[label].append((similarity, sentences[i]))
# Order sentences within each cluster based on their similarity to the centroid
for cluster in clustered_sentences:
cluster.sort(reverse=True) # Sort based on similarity (descending order)
# Return the ordered clustered sentences without similarity scores for display
return [[sentence for _, sentence in cluster] for cluster in clustered_sentences]
def get_text_file_download_link(text_to_download, filename='Output.txt', button_label="πŸ’Ύ Save"):
buffer = BytesIO()
buffer.write(text_to_download.encode())
buffer.seek(0)
b64 = base64.b64encode(buffer.read()).decode()
href = f'<a href="data:file/txt;base64,{b64}" download="{filename}" style="margin-top:20px;">{button_label}</a>'
return href
def get_high_info_words_per_cluster(cluster_sentences, num_words=5):
cluster_high_info_words = []
for cluster in cluster_sentences:
cluster_text = " ".join(cluster)
high_info_words = extract_high_information_words(cluster_text, num_words)
cluster_high_info_words.append(high_info_words)
return cluster_high_info_words
def plot_cluster_words(cluster_sentences):
for i, cluster in enumerate(cluster_sentences):
cluster_text = " ".join(cluster)
words = re.findall(r'\b[a-z]{4,}\b', cluster_text)
word_freq = FreqDist(words)
top_words = [word for word, _ in word_freq.most_common(20)]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(top_words)
word_vectors = X.toarray()
similarity_matrix = cosine_similarity(word_vectors)
G = nx.from_numpy_array(similarity_matrix)
pos = nx.spring_layout(G, k=0.5)
plt.figure(figsize=(8, 6))
nx.draw_networkx(G, pos, node_size=500, font_size=12, font_weight='bold', with_labels=True, node_color='skyblue', edge_color='gray')
plt.axis('off')
plt.title(f"Cluster {i+1} Word Arrangement")
st.pyplot(plt)
st.markdown(f"**Cluster {i+1} Details:**")
st.markdown(f"Top Words: {', '.join(top_words)}")
st.markdown(f"Number of Sentences: {len(cluster)}")
st.markdown("---")
# Main code for UI
uploaded_file = st.file_uploader("πŸ“ Choose a .txt file", type=['txt'])
example_text = load_example_files()
if example_text:
file_text = example_text
elif uploaded_file:
file_text = uploaded_file.read().decode("utf-8")
else:
file_text = ""
if file_text:
text_without_timestamps = remove_timestamps(file_text)
top_words = extract_high_information_words(text_without_timestamps, 10)
with st.expander("πŸ“Š Top 10 High Information Words"):
st.write(top_words)
with st.expander("πŸ“ˆ Relationship Graph"):
display_relationship_graph(top_words)
context_words = extract_context_words(text_without_timestamps, top_words)
with st.expander("πŸ”— Context Graph"):
display_context_graph(context_words)
with st.expander("πŸ“‘ Context Table"):
display_context_table(context_words)
with st.expander("πŸ“ Sentence Clustering", expanded=True):
sentences = [line.strip() for line in file_text.split('\n') if len(line.strip()) > 10]
num_sentences = len(sentences)
st.write(f"Total Sentences: {num_sentences}")
num_clusters = st.slider("Number of Clusters", min_value=2, max_value=10, value=5)
clustered_sentences = cluster_sentences(sentences, num_clusters)
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
original_text = "\n".join(sentences)
st.text_area("Original Sentences", value=original_text, height=400)
with col2:
st.subheader("Clustered Text")
clusters = ""
clustered_text = ""
cluster_high_info_words = get_high_info_words_per_cluster(clustered_sentences)
for i, cluster in enumerate(clustered_sentences):
cluster_text = "\n".join(cluster)
high_info_words = ", ".join(cluster_high_info_words[i])
clusters += f"Cluster {i+1} (High Info Words: {high_info_words})\n"
clustered_text += f"Cluster {i+1} (High Info Words: {high_info_words}):\n{cluster_text}\n\n"
st.text_area("Clusters", value=clusters, height=200)
st.text_area("Clustered Sentences", value=clustered_text, height=200)
# Verify that all sentences are accounted for in the clustered output
clustered_sentences_flat = [sentence for cluster in clustered_sentences for sentence in cluster]
if set(sentences) == set(clustered_sentences_flat):
st.write("βœ… All sentences are accounted for in the clustered output.")
else:
st.write("❌ Some sentences are missing in the clustered output.")
plot_cluster_words(clustered_sentences)
st.markdown("For more information and updates, visit our [help page](https://huggingface.co/awacke1).")