awacke1's picture
Update app.py
12dcaf7
import streamlit as st
import pandas as pd
import bertopic
import plotly.express as px
import matplotlib as mp
st.set_page_config(page_title="Topic Modeling with Bertopic")
from datasets import load_dataset
st.markdown("""
https://github.com/pinecone-io/examples/tree/master/learn/algos-and-libraries/bertopic
""")
# data = load_dataset('jamescalam/python-reddit')
data = load_dataset("awacke1/LOINC-Panels-and-Forms")
from datasets import load_dataset
geo = load_dataset('jamescalam/world-cities-geo', split='train')
st.write(geo)
import plotly.express as px
palette = ['#1c17ff', '#faff00', '#8cf1ff', '#000000', '#030080', '#738fab']
fig = px.scatter_3d(
x=geo['x'], y=geo['y'], z=geo['z'],
color=geo['continent'],
custom_data=[geo['country'], geo['city']],
color_discrete_sequence=palette
)
fig.update_traces(
hovertemplate="\n".join([
"city: %{customdata[1]}",
"country: %{customdata[0]}"
])
)
fig.write_html("umap-earth-3d.html", include_plotlyjs="cdn", full_html=False)
import numpy as np
geo_arr = np.asarray([geo['x'], geo['y'], geo['z']]).T
geo_arr = geo_arr / geo_arr.max()
st.markdown(geo_arr[:5])
import umap
colors = geo['continent']
c_map = {
'Africa': '#8cf1ff',
'Asia': '#1c17ff',
'Europe': '#faff00',
'North America': '#738fab',
'Oceania': '#030080',
'South America': '#000000'
}
for i in range(len(colors)):
colors[i] = c_map[colors[i]]
colors[:5]
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.auto import tqdm
fig, ax = plt.subplots(3, 3, figsize=(14, 14))
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100]
i, j = 0, 0
for n_neighbors in tqdm(nns):
fit = umap.UMAP(n_neighbors=n_neighbors)
u = fit.fit_transform(geo_arr)
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i])
ax[j, i].set_title(f'n={n_neighbors}')
if i < 2: i += 1
else: i = 0; j += 1
target = geo['continent']
t_map = {
'Africa': 0,
'Asia': 1,
'Europe': 2,
'North America': 3,
'Oceania': 4,
'South America': 5
}
for i in range(len(target)):
target[i] = t_map[target[i]]
fig, ax = plt.subplots(3, 3, figsize=(14, 14))
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100]
i, j = 0, 0
for n_neighbors in tqdm(nns):
fit = umap.UMAP(n_neighbors=n_neighbors)
u = fit.fit_transform(geo_arr, y=target)
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i])
ax[j, i].set_title(f'n={n_neighbors}')
if i < 2: i += 1
else: i = 0; j += 1
import umap
fit = umap.UMAP(n_neighbors=50, min_dist=0.5)
u = fit.fit_transform(geo_arr)
fig = px.scatter(
x=u[:,0], y=u[:,1],
color=geo['continent'],
custom_data=[geo['country'], geo['city']],
color_discrete_sequence=palette
)
fig.update_traces(
hovertemplate="\n".join([
"city: %{customdata[1]}",
"country: %{customdata[0]}"
])
)
fig.write_html("umap-earth-2d.html", include_plotlyjs="cdn", full_html=False)
import pandas as pd
umapped = pd.DataFrame({
'x': u[:,0],
'y': u[:,1],
'continent': geo['continent'],
'country': geo['country'],
'city': geo['city']
})
umapped.to_csv('umapped.csv', sep='|', index=False)
from sklearn.decomposition import PCA
pca = PCA(n_components=2) # this means we will create 2-d space
p = pca.fit_transform(geo_arr)
fig = px.scatter(
x=p[:,0], y=p[:,1],
color=geo['continent'],
custom_data=[geo['country'], geo['city']],
color_discrete_sequence=palette
)
fig.update_traces(
hovertemplate="\n".join([
"city: %{customdata[1]}",
"country: %{customdata[0]}"
])
)
fig.write_html("pca-earth-2d.html", include_plotlyjs="cdn", full_html=False)