Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import bertopic | |
import plotly.express as px | |
import matplotlib as mp | |
st.set_page_config(page_title="Topic Modeling with Bertopic") | |
from datasets import load_dataset | |
st.markdown(""" | |
https://github.com/pinecone-io/examples/tree/master/learn/algos-and-libraries/bertopic | |
""") | |
# data = load_dataset('jamescalam/python-reddit') | |
data = load_dataset("awacke1/LOINC-Panels-and-Forms") | |
from datasets import load_dataset | |
geo = load_dataset('jamescalam/world-cities-geo', split='train') | |
st.write(geo) | |
import plotly.express as px | |
palette = ['#1c17ff', '#faff00', '#8cf1ff', '#000000', '#030080', '#738fab'] | |
fig = px.scatter_3d( | |
x=geo['x'], y=geo['y'], z=geo['z'], | |
color=geo['continent'], | |
custom_data=[geo['country'], geo['city']], | |
color_discrete_sequence=palette | |
) | |
fig.update_traces( | |
hovertemplate="\n".join([ | |
"city: %{customdata[1]}", | |
"country: %{customdata[0]}" | |
]) | |
) | |
fig.write_html("umap-earth-3d.html", include_plotlyjs="cdn", full_html=False) | |
import numpy as np | |
geo_arr = np.asarray([geo['x'], geo['y'], geo['z']]).T | |
geo_arr = geo_arr / geo_arr.max() | |
st.markdown(geo_arr[:5]) | |
import umap | |
colors = geo['continent'] | |
c_map = { | |
'Africa': '#8cf1ff', | |
'Asia': '#1c17ff', | |
'Europe': '#faff00', | |
'North America': '#738fab', | |
'Oceania': '#030080', | |
'South America': '#000000' | |
} | |
for i in range(len(colors)): | |
colors[i] = c_map[colors[i]] | |
colors[:5] | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from tqdm.auto import tqdm | |
fig, ax = plt.subplots(3, 3, figsize=(14, 14)) | |
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100] | |
i, j = 0, 0 | |
for n_neighbors in tqdm(nns): | |
fit = umap.UMAP(n_neighbors=n_neighbors) | |
u = fit.fit_transform(geo_arr) | |
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i]) | |
ax[j, i].set_title(f'n={n_neighbors}') | |
if i < 2: i += 1 | |
else: i = 0; j += 1 | |
target = geo['continent'] | |
t_map = { | |
'Africa': 0, | |
'Asia': 1, | |
'Europe': 2, | |
'North America': 3, | |
'Oceania': 4, | |
'South America': 5 | |
} | |
for i in range(len(target)): | |
target[i] = t_map[target[i]] | |
fig, ax = plt.subplots(3, 3, figsize=(14, 14)) | |
nns = [2, 3, 4, 5, 10, 15, 30, 50, 100] | |
i, j = 0, 0 | |
for n_neighbors in tqdm(nns): | |
fit = umap.UMAP(n_neighbors=n_neighbors) | |
u = fit.fit_transform(geo_arr, y=target) | |
sns.scatterplot(x=u[:,0], y=u[:,1], c=colors, ax=ax[j, i]) | |
ax[j, i].set_title(f'n={n_neighbors}') | |
if i < 2: i += 1 | |
else: i = 0; j += 1 | |
import umap | |
fit = umap.UMAP(n_neighbors=50, min_dist=0.5) | |
u = fit.fit_transform(geo_arr) | |
fig = px.scatter( | |
x=u[:,0], y=u[:,1], | |
color=geo['continent'], | |
custom_data=[geo['country'], geo['city']], | |
color_discrete_sequence=palette | |
) | |
fig.update_traces( | |
hovertemplate="\n".join([ | |
"city: %{customdata[1]}", | |
"country: %{customdata[0]}" | |
]) | |
) | |
fig.write_html("umap-earth-2d.html", include_plotlyjs="cdn", full_html=False) | |
import pandas as pd | |
umapped = pd.DataFrame({ | |
'x': u[:,0], | |
'y': u[:,1], | |
'continent': geo['continent'], | |
'country': geo['country'], | |
'city': geo['city'] | |
}) | |
umapped.to_csv('umapped.csv', sep='|', index=False) | |
from sklearn.decomposition import PCA | |
pca = PCA(n_components=2) # this means we will create 2-d space | |
p = pca.fit_transform(geo_arr) | |
fig = px.scatter( | |
x=p[:,0], y=p[:,1], | |
color=geo['continent'], | |
custom_data=[geo['country'], geo['city']], | |
color_discrete_sequence=palette | |
) | |
fig.update_traces( | |
hovertemplate="\n".join([ | |
"city: %{customdata[1]}", | |
"country: %{customdata[0]}" | |
]) | |
) | |
fig.write_html("pca-earth-2d.html", include_plotlyjs="cdn", full_html=False) | |