awacke1 commited on
Commit
dc73592
โ€ข
1 Parent(s): 145a7f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -533,45 +533,45 @@ def search_glossary(query): # ๐Ÿ”Run------------------------------------------
533
 
534
  # ๐Ÿ”Run 1 - plain query
535
  #response = chat_with_model(query)
536
- response1 = chat_with_model45(query)
537
 
538
- all = query + ' ' + response1
539
- st.write('๐Ÿ”Run 1 is Complete.')
540
 
541
  # ArXiv searcher ~-<>-~
542
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
543
- response2 = client.predict(
544
  query,
545
  100,
546
  "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
547
  "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
548
  api_name="/update_with_rag_md"
549
  )
550
- st.write('๐Ÿ”Run 2 - Multi-Agent Systems is Complete')
551
 
552
  # experimental 45 - - - - - - - - - - - - -<><><><><>
553
 
554
  # ๐Ÿ”Run PaperSummarizer
555
  PaperSummarizer = ' Create a paper summary as a markdown table clustering the features with short emoji outlines and preserve links, shortening it significantly. For each one create three simple points led by an emoji of the main three steps needed as method step process for implementing the idea as streamlit python app. '
556
  # = str(result).replace('\n', ' ').replace('|', ' ')
557
- response3 = chat_with_model45(PaperSummarizer + response1 + response2)
558
  st.write('๐Ÿ”Run 3 - Paper Summarizer is Complete.')
559
 
560
  # ๐Ÿ”Run AppSpecifier
561
  AppSpecifier = ' Design and write a streamlit python app specification that implements each scientific method steps as function defined and described as a sorted and grouped topic table to outline the AI pipeline ensemble implementing code as full plan to build.'
562
  #result = str(result).replace('\n', ' ').replace('|', ' ')
563
- response4 = chat_with_model45(AppSpecifier + response3)
564
  st.write('๐Ÿ”Run 4 - AppSpecifier is Complete.')
565
 
566
  # ๐Ÿ”Run PythonAppCoder
567
  PythonAppCoder = ' Create a streamlit python app implementing the following list of features using appropriate libraries and function design using streamlit. Show full code listing as output with no commentary. '
568
  #result = str(result).replace('\n', ' ').replace('|', ' ')
569
- response5 = chat_with_model45(PythonAppCoder + response4)
570
  st.write('๐Ÿ”Run Python AppCoder is Complete.')
571
 
572
  # experimental 45 - - - - - - - - - - - - -<><><><><>
573
 
574
- responseAll = query + response1 + response2 + response3 + response4 + response5
575
  filename = generate_filename(responseAll, "md")
576
  create_file(filename, query, responseAll, should_save)
577
  #queries = query + specquery + codequery + webquery
 
533
 
534
  # ๐Ÿ”Run 1 - plain query
535
  #response = chat_with_model(query)
536
+ #response1 = chat_with_model45(query)
537
 
538
+ #all = query + ' ' + response1
539
+ #st.write('๐Ÿ”Run 1 is Complete.')
540
 
541
  # ArXiv searcher ~-<>-~
542
  client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
543
+ response1 = client.predict(
544
  query,
545
  100,
546
  "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
547
  "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
548
  api_name="/update_with_rag_md"
549
  )
550
+ st.write('๐Ÿ”Run of Multi-Agent Systems is Complete')
551
 
552
  # experimental 45 - - - - - - - - - - - - -<><><><><>
553
 
554
  # ๐Ÿ”Run PaperSummarizer
555
  PaperSummarizer = ' Create a paper summary as a markdown table clustering the features with short emoji outlines and preserve links, shortening it significantly. For each one create three simple points led by an emoji of the main three steps needed as method step process for implementing the idea as streamlit python app. '
556
  # = str(result).replace('\n', ' ').replace('|', ' ')
557
+ response2 = chat_with_model45(PaperSummarizer + response1)
558
  st.write('๐Ÿ”Run 3 - Paper Summarizer is Complete.')
559
 
560
  # ๐Ÿ”Run AppSpecifier
561
  AppSpecifier = ' Design and write a streamlit python app specification that implements each scientific method steps as function defined and described as a sorted and grouped topic table to outline the AI pipeline ensemble implementing code as full plan to build.'
562
  #result = str(result).replace('\n', ' ').replace('|', ' ')
563
+ response3 = chat_with_model45(AppSpecifier + response2)
564
  st.write('๐Ÿ”Run 4 - AppSpecifier is Complete.')
565
 
566
  # ๐Ÿ”Run PythonAppCoder
567
  PythonAppCoder = ' Create a streamlit python app implementing the following list of features using appropriate libraries and function design using streamlit. Show full code listing as output with no commentary. '
568
  #result = str(result).replace('\n', ' ').replace('|', ' ')
569
+ response4 = chat_with_model45(PythonAppCoder + response3)
570
  st.write('๐Ÿ”Run Python AppCoder is Complete.')
571
 
572
  # experimental 45 - - - - - - - - - - - - -<><><><><>
573
 
574
+ responseAll = query + response1 + response2 + response3 + response4 + response
575
  filename = generate_filename(responseAll, "md")
576
  create_file(filename, query, responseAll, should_save)
577
  #queries = query + specquery + codequery + webquery